Publication:
Bisphosphonic acid-functionalized cross-linkers to tailor hydrogel properties for biomedical applications

dc.contributor.coauthorGüven, Melek N.
dc.contributor.coauthorAltuncu, Merve S.
dc.contributor.coauthorGülyüz, Ümit
dc.contributor.coauthorOkay, Oğuz
dc.contributor.coauthorAvcı, Duygu
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorBal, Tuğba
dc.contributor.kuauthorOran, Dilem Ceren
dc.contributor.kuauthorKızılel, Seda
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokid28376
dc.date.accessioned2024-11-09T11:52:10Z
dc.date.issued2018
dc.description.abstractTwo bisphosphonic acid-functionalized cross-linkers (one novel) with different spacer chain characteristics were synthesized and incorporated into hydrogels by copolymerization with 2-hydroxyethyl methacrylate at different ratios to control the hydrogels' swelling, mechanical properties, and ability to support mineralization for biomedical applications. The cross-linkers were synthesized by reaction of 2-isocyanatoethyl methacrylate and bisphosphonated diamines followed by selective dealkylation of the bisphosphonate ester groups. The hydrogels provide in vitro growth of carbonated apatite, morphology affected by the cross-linker structure. The hydrogels exhibit a high Young's modulus E (up to 400 kPa) and can sustain up to 10.2 +/- 0.1 MPa compressive stresses. E and hence the cross-link density significantly increases upon mineralization reflecting the formation of many bisphosphonate BP-Ca2+ bonds acting as additional cross-links. Cyclic mechanical tests reveal self-recoverability of hydrogels because of reversible nature of BP-Ca2+ bonds. The results suggest that these cross-linkers can add calcium-binding abilities to hydrogels synthesized from any monomer and improve their mechanical, swelling, and mineralization properties and hence are potentially useful materials for biomedical applications.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue8
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipBoğaziçi University Research Fund
dc.description.sponsorshipTurkish Academy of Sciences (TÜBA)
dc.description.versionPublisher version
dc.description.volume3
dc.formatpdf
dc.identifier.doi10.1021/acsomega.8b01103
dc.identifier.eissn2470-1343
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01394
dc.identifier.issn2470-1343
dc.identifier.linkhttps://doi.org/10.1021/acsomega.8b01103
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85050974067
dc.identifier.urihttps://hdl.handle.net/20.500.14288/733
dc.identifier.wos440617900022
dc.keywordsBone tissue
dc.keywordsIn-vitro
dc.keywordsBiomimetic mineralization
dc.keywordsNetwork hydrogels
dc.keywordsPhosphate
dc.keywordsBiomineralization
dc.keywordsCalcification
dc.keywordsPolymers
dc.keywordsDifferentiation
dc.keywordsNanocomposites
dc.languageEnglish
dc.publisherAmerican Chemical Society (ACS)
dc.relation.grantno11820
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/7991
dc.sourceACS Omega
dc.subjectChemistry, multidisciplinary
dc.titleBisphosphonic acid-functionalized cross-linkers to tailor hydrogel properties for biomedical applications
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.authorid0000-0001-9092-2698
local.contributor.kuauthorBal, Tuğba
local.contributor.kuauthorOran, Dilem Ceren
local.contributor.kuauthorKızılel, Seda
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
7991.pdf
Size:
5.3 MB
Format:
Adobe Portable Document Format