Publication:
Computation of pseudospectral abscissa for large-scale nonlinear eigenvalue problems

dc.contributor.coauthorMeerbergen, Karl
dc.contributor.coauthorMichiels, Wim
dc.contributor.coauthorVan Beeumen, Roel
dc.contributor.departmentDepartment of Mathematics
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorMengi, Emre
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid113760
dc.date.accessioned2024-11-09T13:19:04Z
dc.date.issued2017
dc.description.abstractWe present an algorithm to compute the pseudospectral abscissa for a nonlinear eigenvalue problem. The algorithm relies on global under-estimator and over-estimator functions for the eigenvalue and singular value functions involved. These global models follow from eigenvalue perturbation theory. The algorithm has three particular features. First, it converges to the globally rightmost point of the pseudospectrum, and it is immune to nonsmoothness. The global convergence assertion is under the assumption that a global lower bound is available for the second derivative of a singular value function depending on one parameter. It may not be easy to deduce such a lower bound analytically, but assigning large negative values works robustly in practice. Second, it is applicable to large-scale problems since the dominant cost per iteration stems from computing the smallest singular value and associated singular vectors, for which efficient iterative solvers can be used. Furthermore, a significant increase in computational efficiency can be obtained by subspace acceleration, that is, by restricting the domains of the linear maps associated with the matrices involved to small but suitable subspaces, and solving the resulting reduced problems. Occasional restarts of these subspaces further enhance the efficiency for large-scale problems. Finally, in contrast to existing iterative approaches based on constructing low-rank perturbations and rightmost eigenvalue computations, the algorithm relies on computing only singular values of complex matrices. Hence, the algorithm does not require solutions of nonlinear eigenvalue problems, thereby further increasing efficiency and reliability. This work is accompanied by a robust implementation of the algorithm that is publicly available.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue4
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipThe Optimization in Engineering Center of the KU Leuven
dc.description.sponsorshipResearch Foundation-Flanders (FWO)
dc.description.sponsorshipResearch Executive Agency of the European Union
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipBAGEP Program of Science Academy
dc.description.versionAuthor's final manuscript
dc.description.volume37
dc.formatpdf
dc.identifier.doi10.1093/imanum/drw065
dc.identifier.eissn1464-3642
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01557
dc.identifier.issn0272-4979
dc.identifier.linkhttps://doi.org/10.1093/imanum/drw065
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85016562503
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3077
dc.identifier.wos412578700008
dc.keywordsPseudospectra
dc.keywordsNonlinear eigenvalue problem
dc.keywordsEigenvalue perturbation theory
dc.keywordsNonsmooth optimization
dc.keywordsSubspace methods
dc.keywordsGlobal optimization
dc.languageEnglish
dc.publisherOxford University Press (OUP)
dc.relation.grantnoG.0712.11N
dc.relation.grantnoPIRG-GA-2010-268355
dc.relation.grantno2539
dc.relation.grantno113T053
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8183
dc.sourceIMA Journal of Numerical Analysis
dc.subjectMathematics
dc.titleComputation of pseudospectral abscissa for large-scale nonlinear eigenvalue problems
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-0788-0066
local.contributor.kuauthorMengi, Emre
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8183.pdf
Size:
827.74 KB
Format:
Adobe Portable Document Format