Publication: Practical implementation of RIS-Aided spectrum sensing: a deep-learning-based solution
dc.contributor.coauthor | Hokelek, I (Hokelek, Ibrahim) | |
dc.contributor.coauthor | Gorcin, A (Gorcin, Ali) | |
dc.contributor.department | Department of Electrical and Electronics Engineering | |
dc.contributor.department | CoreLab (Communications Research and Innovation Laboratory) | |
dc.contributor.kuauthor | Başar, Ertuğrul | |
dc.contributor.kuauthor | Yıldırım, İbrahim | |
dc.contributor.kuauthor | Kayraklık, Sefa | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | Laboratory | |
dc.date.accessioned | 2025-03-06T21:01:39Z | |
dc.date.issued | 2024 | |
dc.description.abstract | This article presents reconfigurable intelligent surface (RIS)-aided deep learning (DL)-based spectrum sensing for next-generation cognitive radios (CRs). To that end, the secondary user (SU) monitors the primary transmitter (PT) signal, where the RIS plays a pivotal role in increasing the strength of the PT signal at the SU. The spectrograms of the synthesized dataset, including the fourth-generation long-term evolution and fifth-generation new radio signals, are mapped to images utilized for training the state-of-the-art object detection approaches, namely, Detectron2 and YOLOv7. By conducting extensive experiments using a real RIS prototype, we demonstrate that the RIS can consistently and significantly improve the performance of the DL detectors to identify the PT signal type along with its time and frequency utilization. This study also paves the way for optimizing spectrum utilization through RIS-assisted CR application in next-generation wireless communication systems. | |
dc.description.indexedby | WOS | |
dc.description.indexedby | Scopus | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.identifier.doi | 10.1109/JSYST.2024.3376986 | |
dc.identifier.eissn | 1937-9234 | |
dc.identifier.issn | 1932-8184 | |
dc.identifier.issue | 2 | |
dc.identifier.quartile | Q1 | |
dc.identifier.scopus | 2-s2.0-85189331385 | |
dc.identifier.uri | https://doi.org/10.1109/JSYST.2024.3376986 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/28019 | |
dc.identifier.volume | 18 | |
dc.identifier.wos | 1193669300001 | |
dc.keywords | Sensors Spectrogram | |
dc.keywords | Training Detectors | |
dc.keywords | Signal processing | |
dc.keywords | Vectors | |
dc.keywords | Task analysis | |
dc.keywords | Detectron2 | |
dc.keywords | Reconfigurable intelligent surface (RIS) | |
dc.keywords | Smart radio environment | |
dc.keywords | Spectrum sensing | |
dc.keywords | YOLOv7 | |
dc.language.iso | eng | |
dc.publisher | IEEE | |
dc.relation.ispartof | IEEE Systems Journal | |
dc.subject | Computer Science | |
dc.subject | Telecommunications | |
dc.title | Practical implementation of RIS-Aided spectrum sensing: a deep-learning-based solution | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.publication.orgunit1 | College of Engineering | |
local.publication.orgunit1 | Laboratory | |
local.publication.orgunit2 | Department of Electrical and Electronics Engineering | |
local.publication.orgunit2 | CoreLab (Communications Research and Innovation Laboratory) | |
relation.isOrgUnitOfPublication | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 | |
relation.isOrgUnitOfPublication | 65c7c6b7-d90c-4bb1-a1cb-054f13135330 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 | |
relation.isParentOrgUnitOfPublication | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 | |
relation.isParentOrgUnitOfPublication | 20385dee-35e7-484b-8da6-ddcc08271d96 | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 |