Publication:
Dans figürlerinin işitsel-görsel analizi için işi̇tsel özniteliklerin deǧerlendi̇ri̇lmesi̇

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorDemir, Yasemin
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuauthorOfli, Ferda
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.kuauthorYemez, Yücel
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T23:59:29Z
dc.date.issued2008
dc.description.abstractWe present a framework for selecting best audio features for audiovisual analysis and synthesis of dance figures. Dance figures are performed synchronously with the musical rhythm. They can be analyzed through the audio spectra using spectral and rhythmic musical features. In the proposed audio feature evaluation system, dance figures are manually labeled over the video stream. The music segments, which correspond to labeled dance figures, are used to train hidden Markov model (HMM) structures to learn temporal spectrum patterns for the dance figures. The dance figure recognition performances of the HMM models for various spectral feature sets are evaluated. Audio features, which are maximizing dance figure recognition performances, are selected as the best audio features for the analyzed audiovisual dance recordings. In our evaluations, mel-scale cepstral coefficients (MFCC) with their first and second derivatives, spectral centroid, spectral flux and spectral roll-off are used as candidate audio features. Selection of the best audio features can be used towards analysis and synthesis of audio-driven body animation.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1109/SIU.2008.4632707
dc.identifier.isbn9781-4244-1999-9
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-56449097955
dc.identifier.urihttps://doi.org/10.1109/SIU.2008.4632707
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15649
dc.keywordsAnalysis and synthesis
dc.keywordsAudio features
dc.keywordsAudio visuals
dc.keywordsAudio-driven body animation
dc.keywordsAudio-visual analysis
dc.keywordsAudiovisual analyses
dc.keywordsCepstral coefficients
dc.keywordsFigure recognitions
dc.keywordsHidden Markov model structures
dc.keywordsHmm models
dc.keywordsMusic segments
dc.keywordsMusical features
dc.keywordsMusical rhythms
dc.keywordsSecond derivatives
dc.keywordsSelection of the bests
dc.keywordsSpectral features
dc.keywordsSpectral fluxes
dc.keywordsAnimation
dc.keywordsHidden Markov models
dc.keywordsMarkov processes
dc.keywordsModel structures
dc.keywordsSignal processing
dc.keywordsAudio acoustics
dc.language.isotur
dc.publisherIEEE
dc.relation.ispartof2008 IEEE 16th Signal Processing, Communication and Applications Conference, SIU
dc.subjectElectrical electronics engineering
dc.subjectComputer engineering
dc.titleDans figürlerinin işitsel-görsel analizi için işi̇tsel özniteliklerin deǧerlendi̇ri̇lmesi̇
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorTekalp, Ahmet Murat
local.contributor.kuauthorErzin, Engin
local.contributor.kuauthorYemez, Yücel
local.contributor.kuauthorOfli, Ferda
local.contributor.kuauthorDemir, Yasemin
local.publication.orgunit1College of Engineering
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit2Department of Electrical and Electronics Engineering
local.publication.orgunit2Department of Computer Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files