Publication:
The 'wavelet' entropic index q of non-extensive statistical mechanics and superstatistics

dc.contributor.coauthorAkıllı, Mahmut
dc.contributor.coauthorAkdeniz, K. Gediz
dc.contributor.departmentDepartment of Physics
dc.contributor.kuauthorYılmaz, Nazmi
dc.contributor.kuprofileTeaching Faculty
dc.contributor.otherDepartment of Physics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid178427
dc.date.accessioned2024-11-09T23:43:10Z
dc.date.issued2021
dc.description.abstractGeneralized entropies developed for non-extensive statistical mechanics are derived from the Boltzmann-Gibbs-Shannon entropy by a real number q that is a parameter based on q-calculus; where is called ‘the entropic index’ and determines the degree of non-extensivity of a system in the interval between 1 and 3. In a very recent study, we introduced a new calculation method of the entropic index of non-extensive statistical mechanics. In this study, we show the mathematical proof of this calculation method of the entropic index. Firstly, we propose that the number of degrees of freedom, is proportional to the inverse of the wavelet scale index, where is a wavelet based parameter called wavelet scale index that quantitatively measures the non-periodicity of a signal in the interval between 0 and 1. Then, by applying this proposition to the superstatistics approach, we derive the equation that expresses the relationship between the entropic index and the wavelet scale index. Therefore, we name this -index as the ‘wavelet’ entropic index. Lastly, we calculate the Abe entropy, Landsberg-Vedral entropy and q-qualities of the Tsallis entropy of the Logistic Map and Hennon Map using the ‘wavelet’ entropic index, and based on our results, compare and discuss these generalized entropies. 
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume150
dc.identifier.doi10.1016/j.chaos.2021.111094
dc.identifier.eissn1873-2887
dc.identifier.issn0960-0779
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85107775593
dc.identifier.urihttp://dx.doi.org/10.1016/j.chaos.2021.111094
dc.identifier.urihttps://hdl.handle.net/20.500.14288/13451
dc.identifier.wos687259500012
dc.keywordsDegrees of freedom
dc.keywordsGeneralized entropies
dc.keywordsNon-extensive statistical mechanics
dc.keywordsSuperstatistics
dc.keywordsWavelet scale index
dc.keywords‘Wavelet’ entropic index
dc.languageEnglish
dc.sourceChaos Solitons & Fractals
dc.subjectMathematics
dc.titleThe 'wavelet' entropic index q of non-extensive statistical mechanics and superstatistics
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-0631-257X
local.contributor.kuauthorYılmaz, Nazmi
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4

Files