Publication:
Histopathology-based artificial intelligence algorithms for the prediction of prostate cancer metastasis after radical prostatectomy

dc.contributor.coauthorCha E, Lin Z, Lu J, Oliveira LD, Erak E, Mendes AA, Dairo O, Ertunc O, Baena-Del Valle JA, Jones T, Hicks JL, Glavaris S, Guner G, Vidal ID, Trock BJ, Chattopadhyay N, Joshi U, Kondragunta C, Bonthu S, Han M, Mucci LA, Joshu C, De Marzo AM, Stopsack KH, Singhal N, Lotan TL.
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorKulaç, İbrahim
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2025-12-31T08:21:42Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractBackground and objective Multimodal artificial intelligence (AI) algorithms have been validated to predict prostate cancer (PCa) metastasis using combined histopathology and clinical-pathologic parameters in clinical trial cohorts. Here, we used purely histopathology-based AI algorithms to predict the probability of lethal PCa in surgically treated population- or hospital-based cohorts, comparing with genomic classifiers and standard clinical risk tools. Methods This study included representative whole slide images (WSIs) of radical prostatectomy (RP) and needle biopsy samples, or tissue microarrays (TMAs) constructed from RP specimens across five surgically treated PCa cohorts. A concatenated feature-based classification system using histopathologic data from each image generated an AI risk score for metastasis. Key findings and limitations In Cox models for time to metastasis, an AI risk score from prostatectomy WSIs showed similar performance (C-index: 0.81–0.85) to the Decipher or Prolaris genomic classifiers (C-index: 0.72–0.80) in testing cohorts. A modified TMA AI score analyzing ∼1 mm2 of prostatectomy tumor tissue from a nationwide study of 1351 patients had a C-index of 0.71 (95% confidence interval [CI]: 0.67–0.75). In a needle biopsy cohort followed for metastasis after prostatectomy, the TMA AI score had a C-index of 0.74 (95% CI: 0.70–0.79), and models combined with the Cancer of the Prostate Risk Assessment (CAPRA) score showed improved performance (C-index: 0.83 [95% CI: 0.82–0.87]) compared with CAPRA alone (C-index: 0.79 [95% CI: 0.73–0.84]). Limitations include relatively older cohorts, with many biopsies performed before the adoption of modern magnetic resonance imaging–guided techniques. Conclusions and clinical implications This study is among the first to show that histopathology-based AI algorithms applied to small samples of tumor tissue can predict the risk of lethal PCa. These algorithms perform comparably to commonly used genomic classifiers, and their predictive performance is enhanced when combined with clinicopathologic variables.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyPubMed
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1016/j.eururo.2025.08.018
dc.identifier.embargoNo
dc.identifier.pubmed41136278
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105024964400
dc.identifier.urihttps://doi.org/10.1016/j.eururo.2025.08.018
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31604
dc.keywordsProstate cancer
dc.keywordsMetastasis
dc.keywordsLethal
dc.keywordsArtificial intelligence
dc.keywordsDeep learning
dc.keywordsHistopathology
dc.keywordsTissue microarray
dc.keywordsBiopsy
dc.keywordsProstatectomy
dc.keywordsGenomic classifier
dc.language.isoeng
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofEuropean Urology
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectMedicine
dc.titleHistopathology-based artificial intelligence algorithms for the prediction of prostate cancer metastasis after radical prostatectomy
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameKulaç
person.givenNameİbrahim
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery17f2dc8e-6e54-4fa8-b5e0-d6415123a93e

Files