Publication:
Localized thermal emission from topological interfaces

dc.contributor.coauthorErgöktaş, M. Said
dc.contributor.coauthorKeçebaş, Ali
dc.contributor.coauthorDespotelis, Konstantinos
dc.contributor.coauthorSoleymani, Sina
dc.contributor.coauthorBakan, Gökhan
dc.contributor.coauthorPrincipi, Alessandro
dc.contributor.coauthorRotter, Stefan
dc.contributor.coauthorÖzdemir, Şahin K.
dc.contributor.coauthorKocabaş, Coşkun
dc.contributor.departmentDepartment of Physics
dc.contributor.kuauthorKocabaş, Aşkın
dc.contributor.otherDepartment of Physics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-12-29T09:39:38Z
dc.date.issued2024
dc.description.abstractThe control of thermal radiation by shaping its spatial and spectral emission characteristics plays a key role in many areas of science and engineering. Conventional approaches to tailoring thermal emission using metamaterials are hampered both by the limited spatial resolution of the required subwavelength material structures and by the materials' strong absorption in the infrared. In this work, we demonstrate an approach based on the concept of topology. By changing a single parameter of a multilayer coating, we were able to control the reflection topology of a surface, with the critical point of zero reflection being topologically protected. The boundaries between subcritical and supercritical spatial domains host topological interface states with near-unity thermal emissivity. These topological concepts enable unconventional manipulation of thermal light for applications in thermal management and thermal camouflage.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue6700
dc.description.openaccessGreen Open Access
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorsThis work was funded through the European Research Council through ERC-Consolidator grant 682723 and EPSRC EP/X027643/1 (ERCPoC grant) and an Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) Award on Programmable Systems with non-Hermitian Quantum Dynamics(award FA9550-21-1-0202). S.K.O. and A.Ko. acknowledge support from AFOSR awards FA9550-18-1-0235 and FA9550-22-1-0431.A.P. acknowledges support from the European Commission under the EU Horizon 2020 MSCA-RISE-2019 program (project 873028 HYDROTRONICS) and from the Leverhulme Trust under grant agreements RPG-2019-363 and RPG-2023-253.
dc.description.volume384
dc.identifier.doi10.1126/science.ado0534
dc.identifier.eissn1095-9203
dc.identifier.issn0036-8075
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85195439119
dc.identifier.urihttps://doi.org/10.1126/science.ado0534
dc.identifier.urihttps://hdl.handle.net/20.500.14288/23077
dc.identifier.wos1253276700006
dc.keywordsLight
dc.keywordsAbsorber
dc.languageen
dc.publisherAmerican Association for the Advancement of Science
dc.sourceScience
dc.subjectMetamaterial
dc.subjectElectromagnetic radiation
dc.subjectOptics
dc.titleLocalized thermal emission from topological interfaces
dc.typeJournal article
dspace.entity.typePublication
local.contributor.kuauthorKocabaş, Aşkın
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4

Files