Publication:
A survey of the additive dilogarithm

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorÜnver, Sinan
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T23:01:00Z
dc.date.issued2021
dc.description.abstractBorel’s construction of the regulator gives an injective map from the algebraic K–groups of a number field to its Deligne–Beilinson cohomology groups. This has many interesting arithmetic and geometric consequences. The formula for the regulator is expressed in terms of the classical polyogarithm functions. In this paper, we give a survey of the additive dilogarithm and the several different versions of the weight two regulator in the infinitesimal setting. We follow a historical approach which we hope will provide motivation for the definitions and the constructions.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume338
dc.identifier.doi10.1007/978-3-030-65203-6_10
dc.identifier.issn0743-1643
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85106402920
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8160
dc.keywordsAdditive dilogarithm
dc.keywordsBloch group
dc.keywordsInfinitesimal dilogarithm
dc.keywordsRegulators
dc.language.isoeng
dc.publisherBirkhauser
dc.relation.ispartofProgress in Mathematics
dc.subjectDilogarithms
dc.titleA survey of the additive dilogarithm
dc.typeBook Chapter
dspace.entity.typePublication
local.contributor.kuauthorÜnver, Sinan
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files