Publication:
Multiple patch-based piezoelectric energy harvesting from multiple vibration modes of thin plates

dc.contributor.coauthorErturk, Alper
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorArıdoğan, Mustafa Uğur
dc.contributor.kuauthorBaşdoğan, İpek
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid179940
dc.date.accessioned2024-11-09T23:36:48Z
dc.date.issued2013
dc.description.abstractVibration-based energy harvesting using cantilevered piezoelectric beam has been extensively studied over the last decade. In this study, as an alternative to resonant piezoelectric cantilevers, we studied multiple patch-based piezoelectric energy harvesting from multiple vibration modes of thin plates. Analytical electroelastic model of the multiple patch-based piezoelectric harvesters attached on a thin plate is provided based on distributed-parameter modeling approach for series and parallel configurations of the patches. An experimental setup is built with series-configuration of double patch-based harvesters attached on the surfaces of all-four-edges clamped (CCCC) rectangular aluminum plate. Analytical simulations and experimental validations of power generation of the harvesters are performed in a case study. The experimental and analytical frequency response functions (FRF) relating voltage output and vibration response to force input are obtained. The analytical model is validated by comparing analytical and experimental FRFs for a wide range of resistive electrical boundary conditions. The harvested power output across the various resistive loads is explored with a focus on the first four modes of the aluminum plate. Experimental and analytical results are shown to be in agreement for multiple patch-based piezoelectric energy harvesting from multiple vibration modes of thin plates.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsorshipAerospace Division
dc.description.volume2
dc.identifier.doi10.1115/SMASIS2013-3145
dc.identifier.isbn9780-7918-5604-8
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84896330223&doi=10.1115%2fSMASIS2013-3145&partnerID=40&md5=c69e6daa5c17adb84f7303655fabb319
dc.identifier.scopus2-s2.0-84896330223
dc.identifier.urihttp://dx.doi.org/10.1115/SMASIS2013-3145
dc.identifier.urihttps://hdl.handle.net/20.500.14288/12720
dc.identifier.wos349928200086
dc.keywordsAluminum
dc.keywordsAluminum plating
dc.keywordsEnergy harvesting
dc.keywordsFrequency response
dc.keywordsHarvesters
dc.keywordsIntelligent materials
dc.keywordsIntelligent systems
dc.keywordsPiezoelectricity
dc.keywordsPlates (structural components)
dc.keywordsStructural health monitoring
dc.languageEnglish
dc.publisherAmerican Society of Mechanical Engineers
dc.sourceASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2013
dc.subjectAutomation
dc.subjectControl systems
dc.subjectMaterials science
dc.titleMultiple patch-based piezoelectric energy harvesting from multiple vibration modes of thin plates
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-4959-6848
local.contributor.authorid0000-0001-9092-5856
local.contributor.kuauthorArıdoğan, Mustafa Uğur
local.contributor.kuauthorBaşdoğan, İpek
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files