Publication:
Answering spatial density queries under local differential privacy

dc.contributor.coauthor 
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorTire, Ekin
dc.contributor.kuauthorGürsoy, Mehmet Emre
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.researchcenter 
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.unit 
dc.date.accessioned2024-12-29T09:37:45Z
dc.date.issued2024
dc.description.abstractSpatial density queries are fundamental in many geospatial data analysis and crowdsourcing tasks. However, answering spatial density queries may violate users’privacy by exposing their locations to an untrusted data collector. In this paper, we propose a solution for answering spatial density queries under Local Differential Privacy (LDP), a state-of-the-art privacy protection standard. Our solution consists of four main steps: partitioning, finding sensitivity, user-side noisy response computation, and server-side estimation. For the first step, we propose and analyze three basic partitioning strategies, and based on our analysis, we design an improved strategy called Advanced Partitioning. For the second step, we adapt graph-based modeling of query sets from the centralized DP literature. Advanced Partitioning also leverages and extends this technique by formulating the partitioning problem using vertex coloring. For the third and fourth steps, in addition to adapting two popular LDP protocols (GRR, RAPPOR), we propose a novel extension for the OUE protocol. Our new protocol (OBE) is not only applicable to our problem but can also be used in other LDP problems with bitvector encodings. Finally, we perform an extensive experimental evaluation of different partitioning strategies and protocols using multiple real-world datasets. Results show that Advanced Partitioning and OBE yield the lowest error, demonstrating the superiority of our proposed methods. IEEE
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue10
dc.description.openaccess 
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsors 
dc.description.volume11
dc.identifier.doi10.1109/JIOT.2024.3357570
dc.identifier.eissn 
dc.identifier.issn2327-4662
dc.identifier.link 
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85184336763
dc.identifier.urihttps://doi.org/10.1109/JIOT.2024.3357570
dc.identifier.urihttps://hdl.handle.net/20.500.14288/22477
dc.identifier.wos1221337300061
dc.keywordsData privacy
dc.keywordsDifferential privacy
dc.keywordsEstimation
dc.keywordsGeospatial data analysis
dc.keywordsLocal differential privacy
dc.keywordsLocation privacy
dc.keywordsPrivacy
dc.keywordsProtocols
dc.keywordsSensitivity
dc.keywordsServers
dc.keywordsSpatial crowdsourcing
dc.keywordsSpatial databases
dc.languageen
dc.publisherIEEE-Inst Electrical Electronics Engineers Inc
dc.relation.grantno 
dc.rights 
dc.sourceIEEE Internet of Things Journal
dc.subjectDifferential privacy
dc.subjectLearning systems
dc.subjectData mining
dc.titleAnswering spatial density queries under local differential privacy
dc.typeJournal article
dc.type.other 
dspace.entity.typePublication
local.contributor.kuauthorTire, Ekin
local.contributor.kuauthorGürsoy, Mehmet Emre
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files