Publication:
Mems cantilever sensor array oscillators: theory and experiments

dc.contributor.coauthorYaralıoğlu, Gökşen G.
dc.contributor.coauthorLeblebici, Yusuf
dc.contributor.departmentN/A
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorLüleç, Sevil Zeynep
dc.contributor.kuauthorAdiyan, Ulaş
dc.contributor.kuauthorÜrey, Hakan
dc.contributor.kuprofileResearcher
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteN/A
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokid8579
dc.date.accessioned2024-11-10T00:07:19Z
dc.date.issued2016
dc.description.abstractThis paper demonstrates that an array of cantilever sensors can be operated simultaneously at resonance using a single actuator and a single photodetector. Self-sustained oscillations (SSOs) of cantilevers can be achieved in a feed-back loop using gain saturation mechanism in the electronics. Multiple cantilevers require separate saturation mechanisms and separate sensing electronics for each channel. We introduced optical non-linearity using diffraction gratings at the tip of each cantilever which provide separate saturation non-linearity, enabling a single detector based oscillator array. Two-cantilever SSO operation is investigated analytically, and the multiple frequency oscillation criteria are established. Cross-coupling between the oscillation frequencies has been investigated by using this multi cantilever model. The proposed model will be helpful to design dynamic-mode MEMS (Micro-electro-mechanical systems) cantilever sensor arrays with the desired functionality and cross-talk levels. This multiple SSO operation can be used in conjunction with dense cantilever arrays for various biosensor applications. Moreover, the model can also be useful to understand the operation of any kind of multiple simultaneous oscillator systems, which employs a single feed-back loop. We also present experimental results that confirm our model.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsorshipTUBITAKgrants [113S074, 111E184] This project is partly sponsored by TUBITAKgrants 113S074 and 111E184.
dc.description.volume237
dc.identifier.doi10.1016/j.sna.2015.11.028
dc.identifier.issn0924-4247
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-84951335309
dc.identifier.urihttp://dx.doi.org/10.1016/j.sna.2015.11.028
dc.identifier.urihttps://hdl.handle.net/20.500.14288/16764
dc.identifier.wos369201500018
dc.keywordsBiosensors
dc.keywordsMEMS cantilever sensor arrays
dc.keywordsMultiple self-sustained oscillation
dc.keywordsInterferometric readout
dc.keywordsDiffraction grating
dc.keywordsPiezoelectric cantilever
dc.keywordsVapor detection
dc.keywordsLocking
dc.languageEnglish
dc.publisherElsevier Science Sa
dc.sourceSensors and Actuators A-Physical
dc.subjectEngineering
dc.subjectElectrical and electronics engineering
dc.titleMems cantilever sensor array oscillators: theory and experiments
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-9591-4977
local.contributor.authorid0000-0002-0718-4418
local.contributor.authorid0000-0002-2031-7967
local.contributor.kuauthorLüleç, Sevil Zeynep
local.contributor.kuauthorAdiyan, Ulaş
local.contributor.kuauthorÜrey, Hakan
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files