Publication:
Multi-level computational screening of in silico designed MOFs for efficient SO(2) capture

dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorKeskin, Seda
dc.contributor.kuauthorDemir, Hakan
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Chemical and Biological Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid40548
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T12:11:52Z
dc.date.issued2022
dc.description.abstractSO2 presence in the atmosphere can cause significant harm to the human and environment through acid rain and/or smog formation. Combining the operational advantages of adsorption-based separation and diverse nature of metal-organic frameworks (MOFs), cost-effective separation processes for SO2 emissions can be developed. Herein, a large database of hypothetical MOFs composed of >300,000 materials is screened for SO2/CH4, SO2/CO2, and SO2/N2 separations using a multi-level computational approach. Based on a combination of separation performance metrics (adsorption selectivity, working capacity, and regenerability), the best materials and the most common functional groups in those most promising materials are identified for each separation. The top bare MOFs and their functionalized variants are determined to attain SO2/CH4 selectivities of 62.4-16899.7, SO2 working capacities of 0.3-20.1 mol/kg, and SO2 regenerabilities of 5.8-98.5%. Regarding SO2/CO2 separation, they possess SO2/CO2 selectivities of 13.3- 367.2, SO2 working capacities of 0.1-17.7 mol/kg, and SO2 regenerabilities of 1.9-98.2%. For the SO2/N2 separation, their SO2/N2 selectivities, SO2 working capacities, and SO2 regenerabilities span the ranges of 137.9-67,338.9, 0.4-20.6 mol/kg, and 7.0-98.6%, respectively. Besides, using breakdowns of gas separation performances of MOFs into functional groups, separation performance limits of MOFs based on functional groups are identified where bare MOFs (MOFs with multiple functional groups) tend to show the smallest (largest) spreads.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue23
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipResearch and innovation program
dc.description.sponsorshipERC-2017-Starting Grant
dc.description.sponsorshipCOSMOS
dc.description.versionPublisher version
dc.description.volume126
dc.formatpdf
dc.identifier.doi10.1021/acs.jpcc.2c00227
dc.identifier.eissn1932-7455
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03792
dc.identifier.issn1932-7447
dc.identifier.linkhttps://doi.org/10.1021/acs.jpcc.2c00227
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85131966616
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1111
dc.identifier.wos813475600001
dc.keywordsAcid rain
dc.keywordsOrganometallics
dc.keywordsSeparation
dc.languageEnglish
dc.publisherAmerican Chemical Society (ACS)
dc.relation.grantno756489
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10654
dc.sourceJournal of Physical Chemistry C
dc.subjectChemistry
dc.subjectScience and technology
dc.subjectOther topics
dc.subjectMaterials science
dc.titleMulti-level computational screening of in silico designed MOFs for efficient SO(2) capture
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-5968-0336
local.contributor.authoridN/A
local.contributor.kuauthorKeskin, Seda
local.contributor.kuauthorDemir, Hakan
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10654.pdf
Size:
5.23 MB
Format:
Adobe Portable Document Format