Publication: A micropillar-based microfluidic viscometer for newtonian and non-newtonian fluids
Program
KU Authors
Co-Authors
Tanyeri, Melikhan
Erten, Ahmet
Advisor
Publication Date
2020
Language
English
Type
Journal Article
Journal Title
Journal ISSN
Volume Title
Abstract
In this study, a novel viscosity measurement technique based on measuring the deflection of flexible (poly) dimethylsiloxane (PDMS) micropillars is presented. The experimental results show a nonlinear relationship between fluid viscosity and the deflection of micropillars due to viscoelastic properties of PDMS. A calibration curve, demonstrating this nonlinear relationship, is generated, and used to determine the viscosity of an unknown fluid. Using our method, viscosity measurements for Newtonian fluids (glycerol/water solutions) can be performed within 2-100 cP at shear rates gamma = 60.5-398.4 s(-1). We also measured viscosity of human whole blood samples (non-Newtonian fluid) yielding 2.7-5.1 cP at shear rates gamma = 120-345.1 s(-1), which compares well with measurements using conventional rotational vis-cometers (3.6-5.7 cP). With a sensitivity better than 0.5 cP, this method has the potential to be used as a portable microfluidic viscometer for real-time rheological studies. (C) 2020 Elsevier B.V. All rights reserved.
Description
Source:
Analytica Chimica Acta
Publisher:
Elsevier
Keywords:
Subject
Chemistry, Analytical