Publication:
Acoustic trapping and manipulation of hollow microparticles under fluid flow using a single-lens focused ultrasound transducer

dc.contributor.coauthorWrede, Paul
dc.contributor.coauthorAghakhani, Amirreza
dc.contributor.coauthorBozuyuk, Ugur
dc.contributor.coauthorYildiz, Erdost
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorSitti, Metin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-12-29T09:40:33Z
dc.date.issued2023
dc.description.abstractMicroparticle manipulation and trapping play pivotal roles in biotechnology. To achieve effective manipulation within fluidic flow conditions and confined spaces, it is necessary to consider the physical properties of microparticles and the types of trapping forces applied. While acoustic waves have shown potential for manipulating microparticles, the existing setups involve complex actuation mechanisms and unstable microbubbles. Consequently, the need persists for an easily deployable acoustic actuation setup with stable microparticles. Here, we propose the use of hollow borosilicate microparticles possessing a rigid thin shell, which can be efficiently trapped and manipulated using a single-lens focused ultrasound (FUS) transducer under physiologically relevant flow conditions. These hollow microparticles offer stability and advantageous acoustic properties. They can be scaled up and mass-produced, making them suitable for systemic delivery. Our research demonstrates the successful trapping dynamics of FUS within circular tubings of varying diameters, validating the effectiveness of the method under realistic flow rates and ultrasound amplitudes. We also showcase the ability to remove hollow microparticles by steering the FUS transducer against the flow. Furthermore, we present potential biomedical applications, such as active cell tagging and navigation in bifurcated channels as well as ultrasound imaging in mouse cadaver liver tissue.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue45
dc.description.openaccesshybrid, Green Published
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipWe thank Aarushi Bhargava and Hector Estradaforthe discussions. P.W. thanks ETH and Max Planck Center for Learning Systems for funding. The schematics for the figures were drawn usingBioRender.
dc.description.volume15
dc.identifier.doi10.1021/acsami.3c11656
dc.identifier.eissn1944-8252
dc.identifier.issn1944-8244
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85178369222
dc.identifier.urihttps://doi.org/10.1021/acsami.3c11656
dc.identifier.urihttps://hdl.handle.net/20.500.14288/23376
dc.identifier.wos1105543000001
dc.keywordsAcoustic manipulation
dc.keywordsHollow microparticles
dc.keywordsAcoustic trapping
dc.keywordsFocusedultrasound
dc.keywordsMicrorobotics
dc.keywordsParticle manipulation
dc.keywordsUltrasound imaging
dc.keywordsMicrobubbles
dc.language.isoeng
dc.publisherAmer Chemical Soc
dc.relation.grantnoETH
dc.relation.grantnoMax Planck Center for Learning Systems
dc.relation.ispartofACS Applied Materials and Interfaces
dc.subjectNanoscience
dc.subjectNanotechnology
dc.subjectMaterials science
dc.subjectMultidisciplinary
dc.titleAcoustic trapping and manipulation of hollow microparticles under fluid flow using a single-lens focused ultrasound transducer
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
local.publication.orgunit1College of Engineering
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit2Department of Mechanical Engineering
local.publication.orgunit2School of Medicine
person.familyNameSitti
person.givenNameMetin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR04393.pdf
Size:
14.14 MB
Format:
Adobe Portable Document Format