Publication:
Bioengineered 3D models of human pancreatic cancer recapitulate in vivo tumour biology

dc.contributor.coauthorde la Pena, Osuna D.
dc.contributor.coauthorTrabulo, S.M.D.
dc.contributor.coauthorCollin, E.
dc.contributor.coauthorLiu, Y.
dc.contributor.coauthorSharma, S.
dc.contributor.coauthorTatari, M., Behrens, D.
dc.contributor.coauthorLawlor, R.T.
dc.contributor.coauthorScarpa, A.
dc.contributor.coauthorHeeschen, C.
dc.contributor.coauthorMata, A.
dc.contributor.coauthorLoessner, D.
dc.contributor.kuauthorErkan, Murat Mert
dc.contributor.kuprofileFaculty Member
dc.contributor.researchcenterKoç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM)
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.yokid214689
dc.date.accessioned2024-11-09T11:39:53Z
dc.date.issued2021
dc.description.abstractPatient-derived in vivo models of human cancer have become a reality, yet their turnaround time is inadequate for clinical applications. Therefore, tailored ex vivo models that faithfully recapitulate in vivo tumour biology are urgently needed. These may especially benefit the management of pancreatic ductal adenocarcinoma (PDAC), where therapy failure has been ascribed to its high cancer stem cell (CSC) content and high density of stromal cells and extracellular matrix (ECM). To date, these features are only partially reproduced ex vivo using organoid and sphere cultures. We have now developed a more comprehensive and highly tuneable ex vivo model of PDAC based on the 3D co-assembly of peptide amphiphiles (PAs) with custom ECM components (PA-ECM). These cultures maintain patient-specific transcriptional profiles and exhibit CSC functionality, including strong in vivo tumourigenicity. User-defined modification of the system enables control over niche-dependent phenotypes such as epithelial-to-mesenchymal transition and matrix deposition. Indeed, proteomic analysis of these cultures reveals improved matrisome recapitulation compared to organoids. Most importantly, patient-specific in vivo drug responses are better reproduced in self-assembled cultures than in other models. These findings support the use of tuneable self-assembling platforms in cancer research and pave the way for future precision medicine approaches.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipBiotechnology and Biological Sciences Research Council
dc.description.sponsorshipLIDo Grant
dc.description.sponsorshipMedical Research Council
dc.description.sponsorshipUK Regenerative Medicine Platform Acellular/Smart Materials-3D Architecture
dc.description.sponsorshipFondazione Italiana Malattie Pancreas
dc.description.sponsorshipItalian Ministry of Health
dc.description.sponsorshipFondazione Cariverona: Oncology Biobank Project “Antonio Schiavi”
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipEuropean Community Seventh Framework Programme
dc.description.sponsorshipFP7/2007-2013
dc.description.sponsorshipCAM-PaC Consortium
dc.description.sponsorshipBIOMORPH
dc.description.sponsorshipMarie Curie Integration Grant
dc.description.sponsorshipSTROFUNSCAFF
dc.description.sponsorshipERC Starting Grant
dc.description.sponsorshipAssociazione Italiana Ricerca Cancro
dc.description.sponsorshipBarts Cancer Institute Catalyst
dc.description.sponsorshipIMPETUS Awards
dc.description.versionPublisher version
dc.description.volume12
dc.formatpdf
dc.identifier.doi10.1038/s41467-021-25921-9
dc.identifier.eissn2041-1723
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03185
dc.identifier.linkhttps://doi.org/10.1038/s41467-021-25921-9
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85115669000
dc.identifier.urihttps://hdl.handle.net/20.500.14288/167
dc.identifier.wos698984500005
dc.keywordsPeptide
dc.keywordsBioengineering
dc.keywordsCell culture techniques
dc.keywordsGene expression profiling
dc.keywordsGene expression regulation
dc.keywordsHumans
dc.keywordsNeoplastic stem cells
dc.keywordsPancreatic neoplasms
dc.keywordsReproducibility of results
dc.keywordsStromal cells
dc.languageEnglish
dc.publisherNature Portfolio
dc.relation.grantnoBB/M009513/1
dc.relation.grantnoMR/R015651/1
dc.relation.grantnoCUP_J38D19000690001
dc.relation.grantno203885/2017
dc.relation.grantno602783
dc.relation.grantno631783
dc.relation.grantno306873
dc.relation.grantno12182
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9955
dc.sourceNature Communications
dc.subjectScience and technology
dc.titleBioengineered 3D models of human pancreatic cancer recapitulate in vivo tumour biology
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-2753-0234
local.contributor.kuauthorErkan, Murat Mert

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9955.pdf
Size:
7.83 MB
Format:
Adobe Portable Document Format