Publication:
Autocolor: learned light power control for multi-color holograms

dc.contributor.coauthorZhan, Yicheng
dc.contributor.coauthorSun, Qi
dc.contributor.coauthorAkşit, Kaan
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorKavaklı, Koray
dc.contributor.kuauthorÜrey, Hakan
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-12-29T09:39:31Z
dc.date.issued2024
dc.description.abstractMulti-color holograms rely on simultaneous illumination from multiple light sources. These multi-color holograms could utilize light sources better than conventional single-color holograms and can improve the dynamic range of holographic displays. In this letter, we introduce AutoColor, the first learned method for estimating the optimal light source powers required for illuminating multi-color holograms. For this purpose, we establish the first multi-color hologram dataset using synthetic images and their depth information. We generate these synthetic images using a trending pipeline combining generative, large language, and monocular depth estimation models. Finally, we train our learned model using our dataset and experimentally demonstrate that AutoColor significantly decreases the number of steps required to optimize multi-color holograms from > 1000 to 70 iteration steps without compromising image quality. © 2024 SPIE.
dc.description.indexedbyScopus
dc.description.openaccessGreen Open Access
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipKaan Ak\u015Fit, Koray Kavakli and Yicheng Zhan are supported by the Royal Society's RGS/R2/212229 - Research Grants 2021 Round 2 and Meta Reality Labs inclusive rendering initiative 2022. Hakan Urey is supported by the European Innovation Council's HORIZON-EIC-2021-TRANSITION-CHALLENGES program Grant Number 101057672 and T\u00FCbitak's 2247-A National Lead Researchers Program, Project Number 120C145. Qi Sun is partially supported by the National Science Foundation (NSF) research grants #2225861 and #2232817.
dc.identifier.doi10.1117/12.3000082
dc.identifier.isbn978-151067086-0
dc.identifier.issn0277-786X
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85159667691
dc.identifier.urihttps://doi.org/10.1117/12.3000082
dc.identifier.urihttps://hdl.handle.net/20.500.14288/23020
dc.keywordsComputer generated holography
dc.keywordsComputer graphics
dc.keywordsMachine learning
dc.language.isoeng
dc.publisherSPIE
dc.relation.ispartofProceedings of SPIE - The International Society for Optical Engineering
dc.subjectHolograms
dc.titleAutocolor: learned light power control for multi-color holograms
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorKavaklı, Koray
local.contributor.kuauthorÜrey, Hakan
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Electrical and Electronics Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR04502.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format