Publication: Orthogonal embedding-based artificial neural network solutions to ordinary differential equations
Program
KU-Authors
KU Authors
Co-Authors
Hasan Halit Tali
Publication Date
Language
Type
Embargo Status
No
Journal Title
Journal ISSN
Volume Title
Alternative Title
Adi diferansiyel denklemlerin ortogonal gömme tabanlı yapay sinir ağı çözümleri
Abstract
Providing numerical solutions to differential equations in cases where analytical solutions are not available is of great importance. Recently, obtaining more accurate numerical solutions with artificial neural network-based machine learning methods are seen as promising developments for numerical solutions of differential equations. In this paper, a low-cost, orthogonal embedding-based network with fast training by simple gradient descent algorithm is proposed to obtain numerical solutions of differential equations. This architecture is essentially a two-layer neural network that takes orthogonal polynomials as input. The efficiency and accuracy of the method used in this paper are demonstrated in various problems and comparisons are made with other methods. It is observed that the proposed method stands out especially when compared with high-cost solutions.
Analitik çözümlerin mevcut olmadığı durumlarda diferansiyel denklemler için nümerik çözümler elde etmek büyük önem taşımaktadır. Son zamanlarda, yapay sinir ağı tabanlı makine öğrenmesi yöntemleriyle daha tutarlı nümerik çözümlerin elde edilmesi diferansiyel denklemlerin nümerik çözümleri için ümit verici gelişmeler olarak görülmektedir. Bu makalede, diferansiyel denklemlerin nümerik çözümlerini elde etmek için basit gradyan düşüm algoritması ile hızlı eğime sahip düşük maliyetli bir ortogonal gömme tabanlı ağ önerilmektedir. Bu mimari, temelde, ortogonal polinomları girdi olarak alan iki katmanlı bir sinir ağıdır. Bu makalede kullanılan yöntemin verimliliği ve tutarlılığı, çeşitli problemlerde gösterilmiş ve diğer yöntemlerle karşılaştırmalar yapılmıştır. Kullanılan yöntemin, özellikle yüksek maliyetli çözümlerle karşılaştırıldığında öne çıktığı görülmüştür.
Analitik çözümlerin mevcut olmadığı durumlarda diferansiyel denklemler için nümerik çözümler elde etmek büyük önem taşımaktadır. Son zamanlarda, yapay sinir ağı tabanlı makine öğrenmesi yöntemleriyle daha tutarlı nümerik çözümlerin elde edilmesi diferansiyel denklemlerin nümerik çözümleri için ümit verici gelişmeler olarak görülmektedir. Bu makalede, diferansiyel denklemlerin nümerik çözümlerini elde etmek için basit gradyan düşüm algoritması ile hızlı eğime sahip düşük maliyetli bir ortogonal gömme tabanlı ağ önerilmektedir. Bu mimari, temelde, ortogonal polinomları girdi olarak alan iki katmanlı bir sinir ağıdır. Bu makalede kullanılan yöntemin verimliliği ve tutarlılığı, çeşitli problemlerde gösterilmiş ve diğer yöntemlerle karşılaştırmalar yapılmıştır. Kullanılan yöntemin, özellikle yüksek maliyetli çözümlerle karşılaştırıldığında öne çıktığı görülmüştür.
Source
Publisher
Afyon Kocatepe Üniversitesi
Subject
Mathematics
Citation
Has Part
Source
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi
Book Series Title
Edition
DOI
10.35414/akufemubid.1558289
item.page.datauri
Link
Rights
CC BY-NC (Attribution-NonCommercial)
Copyrights Note
Creative Commons license
Except where otherwised noted, this item's license is described as CC BY-NC (Attribution-NonCommercial)

