Publication:
Self-organized residual blocks for image super-resolution

dc.contributor.coauthorMalik, J.
dc.contributor.coauthorKıranyaz, S.
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.kuauthorKeleş, Onur
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid26207
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T11:43:53Z
dc.date.issued2021
dc.description.abstractIt has become a standard practice to use the convolutional networks (ConvNet) with RELU non-linearity in image restoration and super-resolution (SR). Although the universal approximation theorem states that a multi-layer neural network can approximate any non-linear function with the desired precision, it does not reveal the best network architecture to do so. Recently, operational neural networks (ONNs) that choose the best non-linearity from a set of alternatives, and their “self-organized” variants (Self-ONN) that approximate any non-linearity via Taylor series have been proposed to address the well-known limitations and drawbacks of conventional ConvNets such as network homogeneity using only the McCulloch-Pitts neuron model. In this paper, we propose the concept of self-organized operational residual (SOR) blocks, and present hybrid network architectures combining regular residual and SOR blocks to strike a balance between the benefits of stronger non-linearity and the overall number of parameters. The experimental results demonstrate that the proposed architectures yield performance improvements in both PSNR and perceptual metrics.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipKoç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI)
dc.description.sponsorshipTurkish Academy of Sciences (TÜBA)
dc.description.versionPublisher version
dc.formatpdf
dc.identifier.doi10.1109/ICIP42928.2021.9506260
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03567
dc.identifier.isbn9.78167E+12
dc.identifier.issn1522-4880
dc.identifier.linkhttps://doi.org/10.1109/ICIP42928.2021.9506260
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85125571620
dc.identifier.urihttps://hdl.handle.net/20.500.14288/372
dc.identifier.wos819455100118
dc.keywordsConvolutional networks
dc.keywordsGenerative neurons
dc.keywordsHybrid networks
dc.keywordsOperational neural networks
dc.keywordsSelf-organized networks
dc.keywordsSuper-resolution
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantno120C156
dc.relation.grantno 217E033
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10435
dc.sourceProceedings - International Conference on Image Processing, ICIP
dc.subjectObject detection
dc.subjectDeep learning
dc.subjectIOU
dc.titleSelf-organized residual blocks for image super-resolution
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-1465-8121
local.contributor.authoridN/A
local.contributor.kuauthorTekalp, Ahmet Murat
local.contributor.kuauthorKeleş, Onur
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10435.pdf
Size:
5.04 MB
Format:
Adobe Portable Document Format