Publication:
Multimodal speaker identification using an adaptive classifier cascade based on modality reliability

Placeholder

Program

KU Authors

Co-Authors

Advisor

Publication Date

2005

Language

English

Type

Journal Article

Journal Title

Journal ISSN

Volume Title

Abstract

We present a multimodal open-set speaker identification system that integrates information coming from audio, face and lip motion modalities. For fusion of multiple modalities, we propose a new adaptive cascade rule that favors reliable modality combinations through a cascade of classifiers. The order of the classifiers in the cascade is adaptively determined based on the reliability of each modality combination. A novel reliability measure, that genuinely fits to the open-set speaker identification problem, is also proposed to assess accept or reject decisions of a classifier. A formal framework is developed based on probability of correct decision for analytical comparison of the proposed adaptive rule with other classifier combination rules. The proposed adaptive rule is more robust in the presence of unreliable modalities, and outperforms the hard-level max rule and soft-level weighted summation rule, provided that the employed reliability measure is effective in assessment of classifier decisions. Experimental results that support this assertion are provided.

Description

Source:

IEEE Transactions on Multimedia

Publisher:

IEEE-Inst Electrical Electronics Engineers Inc

Keywords:

Subject

Computer science, Information systems, Engineering, Software engineering, Telecommunications

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

0

Downloads

View PlumX Details