Publication: DFPN: deformable frame prediction network
dc.contributor.department | Department of Electrical and Electronics Engineering | |
dc.contributor.department | Department of Electrical and Electronics Engineering | |
dc.contributor.kuauthor | Yılmaz, Mustafa Akın | |
dc.contributor.kuauthor | Tekalp, Ahmet Murat | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.yokid | N/A | |
dc.contributor.yokid | 26207 | |
dc.date.accessioned | 2024-11-09T12:29:43Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Learned frame prediction is a current problem of interest in computer vision and video processing/compression. Although several deep network architectures have been proposed for learned frame prediction, to the best of our knowledge, there is no work based on using deformable convolutions for frame prediction. To this effect, we propose a deformable frame prediction network (DFPN) for task-oriented implicit motion modeling and next frame prediction. Experimental results demonstrate that the proposed DFPN model achieves state of the art results in next frame prediction in sequences with global motion. | |
dc.description.fulltext | YES | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | TÜBİTAK | |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TÜBİTAK) | |
dc.description.sponsorship | Turkish Academy of Sciences (TÜBA) | |
dc.description.sponsorship | Koç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI) | |
dc.description.version | Publisher version | |
dc.format | ||
dc.identifier.doi | 10.1109/ICIP42928.2021.9506210 | |
dc.identifier.embargo | NO | |
dc.identifier.filenameinventoryno | IR03512 | |
dc.identifier.isbn | 9781665441155 | |
dc.identifier.issn | 1522-4880 | |
dc.identifier.link | https://doi.org/10.1109/ICIP42928.2021.9506210 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-85125585967 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/1869 | |
dc.identifier.wos | 819455102014 | |
dc.keywords | Attention | |
dc.keywords | Deep learning | |
dc.keywords | Deformable convolution | |
dc.keywords | Video frame prediction | |
dc.language | English | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | |
dc.relation.grantno | 120C156 | |
dc.relation.grantno | 217E033 | |
dc.relation.uri | http://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10297 | |
dc.source | Proceedings - International Conference on Image Processing, ICIP | |
dc.subject | Forecasting | |
dc.title | DFPN: deformable frame prediction network | |
dc.type | Conference proceeding | |
dspace.entity.type | Publication | |
local.contributor.authorid | N/A | |
local.contributor.authorid | 0000-0003-1465-8121 | |
local.contributor.kuauthor | Yılmaz, Mustafa Akın | |
local.contributor.kuauthor | Tekalp, Ahmet Murat | |
relation.isOrgUnitOfPublication | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 |
Files
Original bundle
1 - 1 of 1