Publication:
DFPN: deformable frame prediction network

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorYılmaz, Mustafa Akın
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid26207
dc.date.accessioned2024-11-09T12:29:43Z
dc.date.issued2021
dc.description.abstractLearned frame prediction is a current problem of interest in computer vision and video processing/compression. Although several deep network architectures have been proposed for learned frame prediction, to the best of our knowledge, there is no work based on using deformable convolutions for frame prediction. To this effect, we propose a deformable frame prediction network (DFPN) for task-oriented implicit motion modeling and next frame prediction. Experimental results demonstrate that the proposed DFPN model achieves state of the art results in next frame prediction in sequences with global motion.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipTurkish Academy of Sciences (TÜBA)
dc.description.sponsorshipKoç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI)
dc.description.versionPublisher version
dc.formatpdf
dc.identifier.doi10.1109/ICIP42928.2021.9506210
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03512
dc.identifier.isbn9781665441155
dc.identifier.issn1522-4880
dc.identifier.linkhttps://doi.org/10.1109/ICIP42928.2021.9506210
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85125585967
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1869
dc.identifier.wos819455102014
dc.keywordsAttention
dc.keywordsDeep learning
dc.keywordsDeformable convolution
dc.keywordsVideo frame prediction
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantno120C156
dc.relation.grantno217E033
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10297
dc.sourceProceedings - International Conference on Image Processing, ICIP
dc.subjectForecasting
dc.titleDFPN: deformable frame prediction network
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0003-1465-8121
local.contributor.kuauthorYılmaz, Mustafa Akın
local.contributor.kuauthorTekalp, Ahmet Murat
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10297.pdf
Size:
1.95 MB
Format:
Adobe Portable Document Format