Publication:
Photonic neural networks with multimode fibers at the edge of spatiotemporal chaos

dc.conference.date23 June 2025 - 27 June 2025
dc.conference.locationMunich
dc.conference.organizerEPS, Optica and IEEE Photonics Society
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorKesgin, Bahadır Utku
dc.contributor.kuauthorTeğin, Uğur
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-12-31T08:23:17Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractArtificial Neural Networks became highly useful tools across many aspects of daily and professional life at the cost of high energy consumption. Since these neural networks are hefty nonlinear transformers that map linearly inseparable data into higher dimensions, nonlinear photonic systems or photonic reservoir computers are used to perform similar high-dimensional mapping to reduce overall energy consumption. Previously systems that harness spatiotemporal nonlinearity in multimode fibers were demonstrated to work as effective photonic reservoirs that yield low classification errors with minimal digital training after optical processing [1]. Besides photonic reservoirs, electronic circuits that compute chaotic differential equations were also demonstrated to be performant learning machines [2]. Recent studies have shown that when the ratio of the initial energy of high-order modes and fundamental modes exceeds 1/50 in highly nonlinear settings, chaotic dynamics occur in modal energy flow [3]. © 2025 Elsevier B.V., All rights reserved.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1109/CLEO/EUROPE-EQEC65582.2025.11110453
dc.identifier.eissn2833-1052
dc.identifier.embargoNo
dc.identifier.isbn9798331512521
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105016121279
dc.identifier.urihttps://doi.org/10.1109/CLEO/EUROPE-EQEC65582.2025.11110453
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31716
dc.keywordsControl nonlinearities
dc.keywordsDifferential equations
dc.keywordsEnergy utilization
dc.keywordsGreen computing
dc.keywordsLearning systems
dc.keywordsNeural networks
dc.keywordsNonlinear equations
dc.keywordsNonlinear optics
dc.keywordsOptical data processing
dc.keywordsPersonnel training
dc.keywordsPhotonic devices
dc.keywordsProfessional aspects
dc.keywordsDaily lives
dc.keywordsHigh energy consumption
dc.keywordsHigher dimensions
dc.keywordsLinearly inseparable
dc.keywordsMultimodes
dc.keywordsNeural-networks
dc.keywordsNonlinear photonics
dc.keywordsPhotonic systems
dc.keywordsProfessional life
dc.keywordsSpatiotemporal chaos
dc.keywordsChaos theory
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartof2025 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2025
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectChaos theory
dc.titlePhotonic neural networks with multimode fibers at the edge of spatiotemporal chaos
dc.typeConference Proceeding
dspace.entity.typePublication
person.familyNameKesgin
person.familyNameTeğin
person.givenNameBahadır Utku
person.givenNameUğur
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files