Publication:
Data-Driven Design and Discovery of Metal-Organic Framework/Polymer Mixed Matrix Membranes

dc.contributor.coauthorKeskin, Seda
dc.date.accessioned2025-12-31T08:20:16Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractMetal-organic frameworks (MOFs) are one of the most promising classes of porous materials thanks to their tunable chemistry, structural diversity, and a variety of useful structural properties such as very high porosities and extraordinarily large surface areas. Mixed-matrix membranes (MMMs) that incorporate MOF fillers into polymers have emerged to overcome the selectivity-permeability trade-offs inherent to traditional polymer membranes for gas separations. MOF/polymer MMMs are currently at the forefront of membrane research thanks to their ability to bridge the performance gaps of pure polymers and the practical limitations of pristine MOFs. While experimental studies have demonstrated the strong benefit of using of MOF/polymer MMMs for many different types of separations, the rational design of novel MMMs remains a complex, multi-scale challenge. Integration of machine learning (ML) to current experimental and computational studies will be central to unlocking the industrial potential of MOF/polymer MMMs by guiding materials selection, predicting membrane performance, and even synthesis conditions. This perspective explores how ML is reshaping the design and discovery of MOF/polymer MMMs by discussing current progress, opportunities, and challenges of uniting computational innovation with experimental validation to create the next generation of MOF-based MMMs.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessgold
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipHORIZON EUROPE European Research Council [ERC, STARLET, 101124002]
dc.identifier.doi10.1002/mame.202500364
dc.identifier.eissn1439-2054
dc.identifier.embargoNo
dc.identifier.issn1438-7492
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105021313845
dc.identifier.urihttps://doi.org/10.1002/mame.202500364
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31507
dc.identifier.wos001611263800001
dc.keywordsmembrane
dc.keywordsML
dc.keywordsMOF
dc.keywordspolymer
dc.language.isoeng
dc.publisherWILEY-V C H VERLAG GMBH
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofMacromolecular Materials and Engineering
dc.relation.openaccessNo
dc.rightsCopyrighted
dc.subjectMaterials Science
dc.subjectPolymer Science
dc.titleData-Driven Design and Discovery of Metal-Organic Framework/Polymer Mixed Matrix Membranes
dc.typeJournal Article
dspace.entity.typePublication

Files