Publication: Improvement in gas permeability of biaxially stretched PET films blended with high barrier polymers: the role of chemistry and processing conditions
Program
KU-Authors
KU Authors
Co-Authors
Özen, İlhan
Bozoklu, Guelay
Yücel, Orçun
Ünsal, Emre
Çakmak, Muekerrem
Menceloğlu, Yusuf Ziya
Publication Date
Language
Type
Embargo Status
Journal Title
Journal ISSN
Volume Title
Alternative Title
Abstract
Improvement in oxygen gas barrier properties of polyester/polyamide blends used in packaging industry is the main objective of the present study. For this purpose poly(ethylene terephthalate) (PET)/poly(m-xylene adipamide) (nylon-MXD6) (95/5 w/w) and poly(ethylene terephthalate-co-isophthalate) copolymer (PETI)/MXD6 (95/5 w/w) blends have been prepared with a PET copolymer which consists of 5 wt.% sodium sulfonated isophthalate (PET-co-5SIPA) as compatibilizer and a carboxyl-terminated polybutadiene (CTPB) as filler by using a co-rotating intermeshing twin screw extruder. The effects of chemical architecture and morphology on oxygen gas permeability and processability were analyzed by using a range of characterization techniques including differential scanning calorimetry (DSC) scanning electron microscopy (SEM), oxygen gas permeability analyzer, and a special computer controlled uniaxial stretching system that provides real-time measurement of true stress, true strain and birefringence. The morphological analysis revealed that PETco-5SIPA was an effective compatibilizer for both PET/MXD6 and PETI/MXD6 blends. DSC analysis and spectral-birefringence technique were used to understand the thermal and stress-induced crystallization behavior of the blends. Morphological analysis of the films after biaxial stretching indicated that the spherical nylon phase was converted to 75 nm thick disks during stretching (aspect ratio L/W = 6) that creates a tortuous pathway for oxygen ingress. Stretching enhanced the barrier properties of PET/MXD6 and PETI/MXD6 blends. (C) 2009 Elsevier Ltd. All rights reserved.
Source
Publisher
Elsevier
Subject
Polymer science
Citation
Has Part
Source
European Polymer Journal
Book Series Title
Edition
DOI
10.1016/j.eurpolymj.2009.10.027