Publication:
A practical approach for rate-distortion-perception analysis in learned image compression

Thumbnail Image

School / College / Institute

Organizational Unit

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

NO

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Rate-distortion optimization (RDO) of codecs, where distortion is quantified by the mean-square error, has been a standard practice in image/video compression over the years. RDO serves well for optimization of codec performance for evaluation of the results in terms of PSNR. However, it is well known that the PSNR does not correlate well with perceptual evaluation of images; hence, RDO is not well suited for perceptual optimization of codecs. Recently, rate-distortion-perception trade-off has been formalized by taking the Kullback-Leibler (KL) divergence between the distributions of the original and reconstructed images as a perception measure. Learned image compression methods that simultaneously optimize rate, mean-square loss, VGG loss, and an adversarial loss were proposed. Yet, there exists no easy approach to fix the rate, distortion or perception at a desired level in a practical learned image compression solution to perform an analysis of the trade-off between rate, distortion and perception measures. In this paper, we propose a practical approach to fix the rate to carry out perception-distortion analysis at a fixed rate in order to perform perceptual evaluation of image compression results in a principled manner. Experimental results provide several insights for practical rate-distortion-perception analysis in learned image compression.

Source

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Engineering, Imaging scienc, Photographic technology

Citation

Has Part

Source

2021 Picture Coding Symposium (PCS)

Book Series Title

Edition

DOI

10.1109/PCS50896.2021.9477479

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

7

Downloads

View PlumX Details