Publication:
Enhancing AI-based decision support system with automatic brain tumor segmentation for EGFR mutation classification

dc.contributor.coauthorGokmen, Neslihan
dc.contributor.coauthorKocadagli, Ozan
dc.contributor.coauthorCevik, Serdar
dc.contributor.coauthorAktan, Cagdas
dc.contributor.coauthorEghbali, Reza
dc.contributor.coauthorLiu, Chunlei
dc.date.accessioned2025-12-31T08:20:54Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractGlioblastoma (GBM) carries poor prognosis; epidermal-growth-factor-receptor (EGFR) mutations further shorten survival. We propose a fully automated MRI-based decision-support system (DSS) that segments GBM and classifies EGFR status, reducing reliance on invasive biopsy. The segmentation module (UNet SI) fuses multiresolution, entropy-ranked shearlet features with CNN features, preserving fine detail through identity long-skip connections, to yield a Lightweight 1.9 M-parameter network. Tumour masks are fed to an Inception ResNet-v2 classifier via a 512-D bottleneck. The pipeline was five-fold cross-validated on 98 contrast-enhanced T1-weighted scans (Memorial Hospital; Ethics 24.12.2021/008) and externally validated on BraTS 2019. On the Memorial cohort UNet SI achieved Dice 0.873, Jaccard 0.853, SSIM 0.992, HD95 24.19 mm. EGFR classification reached Accuracy 0.960, Precision 1.000, Recall 0.871, AUC 0.94, surpassing published state-of-the-art results. Inference time is <= 0.18 s per slice on a 4 GB GPU. By combining shearlet-enhanced segmentation with streamlined classification, the DSS delivers superior EGFR prediction and is suitable for integration into routine clinical workflows.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipTUBTAK 1001 Project Fund [124E170]
dc.identifier.doi10.1007/s11517-025-03447-2
dc.identifier.eissn1741-0444
dc.identifier.embargoNo
dc.identifier.issn0140-0118
dc.identifier.pubmed40983859
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105016742554
dc.identifier.urihttps://doi.org/10.1007/s11517-025-03447-2
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31555
dc.identifier.wos001575744300001
dc.keywordsBrain tumours
dc.keywordsGlioblastoma
dc.keywordsDeep learning
dc.keywordsAutomatic segmentation
dc.keywordsEGFR mutation
dc.language.isoeng
dc.publisherSPRINGER HEIDELBERG
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofMedical and Biological Engineering and Computing
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectComputer Science
dc.subjectEngineering
dc.subjectMathematical & Computational Biology
dc.subjectMedical Informatics
dc.titleEnhancing AI-based decision support system with automatic brain tumor segmentation for EGFR mutation classification
dc.typeJournal Article
dspace.entity.typePublication

Files