Publication:
Cyclotomic p-adic multi-zeta values in depth two

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorÜnver, Sinan
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T23:49:36Z
dc.date.issued2016
dc.description.abstractIn this paper we compute the values of the p-adic multiple polylogarithms of depth two at roots of unity. Our method is to solve the fundamental differential equation satisfied by the crystalline frobenius morphism using rigid analytic methods. The main result could be thought of as a computation in the p-adic theory of higher cyclotomy. We expect the result to be useful in proving non-vanishing results since it gives quite explicit formulas.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue45019
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume149
dc.identifier.doi10.1007/s00229-015-0789-8
dc.identifier.eissn1432-1785
dc.identifier.issn0025-2611
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-84958150398
dc.identifier.urihttps://doi.org/10.1007/s00229-015-0789-8
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14392
dc.identifier.wos370199300010
dc.language.isoeng
dc.publisherSpringer Heidelberg
dc.relation.ispartofManuscripta Mathematica
dc.subjectMathematics
dc.titleCyclotomic p-adic multi-zeta values in depth two
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorÜnver, Sinan
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files