Publication: Data-driven design of shape-programmable magnetic soft materials
| dc.contributor.coauthor | Karacakol, Alp C. | |
| dc.contributor.coauthor | Alapan, Yunus | |
| dc.contributor.coauthor | Demir, Sinan O. | |
| dc.contributor.department | School of Medicine | |
| dc.contributor.department | Department of Mechanical Engineering | |
| dc.contributor.kuauthor | Faculty Member, Sitti, Metin | |
| dc.contributor.schoolcollegeinstitute | SCHOOL OF MEDICINE | |
| dc.contributor.schoolcollegeinstitute | College of Engineering | |
| dc.date.accessioned | 2025-05-22T10:31:48Z | |
| dc.date.available | 2025-05-22 | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Magnetically responsive soft materials with spatially-encoded magnetic and material properties enable versatile shape morphing for applications ranging from soft medical robots to biointerfaces. Although high-resolution encoding of 3D magnetic and material properties create a vast design space, their intrinsic coupling makes trial-and-error based design exploration infeasible. Here, we introduce a data-driven strategy that uses stochastic design alterations guided by a predictive neural network, combined with cost-efficient simulations, to optimize distributed magnetization profile and morphology of magnetic soft materials for desired shape-morphing and robotic behaviors. Our approach uncovers non-intuitive 2D designs that morph into complex 2D/3D structures and optimizes morphological behaviors, such as maximizing rotation or minimizing volume. We further demonstrate enhanced jumping performance over an intuitive reference design and showcase fabrication- and scale-agnostic, inherently 3D, multi-material soft structures for robotic tasks including traversing and jumping. This generic, data-driven framework enables efficient exploration of design space of stimuli-responsive soft materials, providing functional shape morphing and behavior for the next generation of soft robots and devices. | |
| dc.description.fulltext | Yes | |
| dc.description.harvestedfrom | Manual | |
| dc.description.indexedby | WOS | |
| dc.description.indexedby | Scopus | |
| dc.description.indexedby | PubMed | |
| dc.description.openaccess | Gold OA | |
| dc.description.publisherscope | International | |
| dc.description.readpublish | N/A | |
| dc.description.sponsoredbyTubitakEu | EU | |
| dc.description.sponsorship | Max-Planck-Gesellschaft (Max Planck Society); European Research Council (ERC); Advanced Grant SoMMoR Project; ETH; Max Planck Center for Learning Systems | |
| dc.description.version | Published Version | |
| dc.identifier.doi | 10.1038/s41467-025-58091-z | |
| dc.identifier.eissn | 2041-1723 | |
| dc.identifier.embargo | No | |
| dc.identifier.filenameinventoryno | IR06043 | |
| dc.identifier.grantno | 834531 | |
| dc.identifier.issue | 1 | |
| dc.identifier.quartile | N/A | |
| dc.identifier.scopus | 2-s2.0-105000875039 | |
| dc.identifier.uri | https://doi.org/10.1038/s41467-025-58091-z | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14288/29110 | |
| dc.identifier.volume | 16 | |
| dc.identifier.wos | 001454467000015 | |
| dc.keywords | Artificial neural network | |
| dc.keywords | Magnetization | |
| dc.keywords | Robotics | |
| dc.keywords | Three-dimensional modeling | |
| dc.language.iso | eng | |
| dc.publisher | Nature Portfolio | |
| dc.relation.affiliation | Koç University | |
| dc.relation.collection | Koç University Institutional Repository | |
| dc.relation.ispartof | Nature Communications | |
| dc.relation.openaccess | Yes | |
| dc.rights | CC BY (Attribution) | |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
| dc.subject | Science and technology | |
| dc.title | Data-driven design of shape-programmable magnetic soft materials | |
| dc.type | Journal Article | |
| dspace.entity.type | Publication | |
| relation.isOrgUnitOfPublication | d02929e1-2a70-44f0-ae17-7819f587bedd | |
| relation.isOrgUnitOfPublication | ba2836f3-206d-4724-918c-f598f0086a36 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | d02929e1-2a70-44f0-ae17-7819f587bedd | |
| relation.isParentOrgUnitOfPublication | 17f2dc8e-6e54-4fa8-b5e0-d6415123a93e | |
| relation.isParentOrgUnitOfPublication | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 | |
| relation.isParentOrgUnitOfPublication.latestForDiscovery | 17f2dc8e-6e54-4fa8-b5e0-d6415123a93e |
