Publication:
Data-driven design of shape-programmable magnetic soft materials

dc.contributor.coauthorKaracakol, Alp C.
dc.contributor.coauthorAlapan, Yunus
dc.contributor.coauthorDemir, Sinan O.
dc.contributor.departmentSchool of Medicine
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorFaculty Member, Sitti, Metin
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-05-22T10:31:48Z
dc.date.available2025-05-22
dc.date.issued2025
dc.description.abstractMagnetically responsive soft materials with spatially-encoded magnetic and material properties enable versatile shape morphing for applications ranging from soft medical robots to biointerfaces. Although high-resolution encoding of 3D magnetic and material properties create a vast design space, their intrinsic coupling makes trial-and-error based design exploration infeasible. Here, we introduce a data-driven strategy that uses stochastic design alterations guided by a predictive neural network, combined with cost-efficient simulations, to optimize distributed magnetization profile and morphology of magnetic soft materials for desired shape-morphing and robotic behaviors. Our approach uncovers non-intuitive 2D designs that morph into complex 2D/3D structures and optimizes morphological behaviors, such as maximizing rotation or minimizing volume. We further demonstrate enhanced jumping performance over an intuitive reference design and showcase fabrication- and scale-agnostic, inherently 3D, multi-material soft structures for robotic tasks including traversing and jumping. This generic, data-driven framework enables efficient exploration of design space of stimuli-responsive soft materials, providing functional shape morphing and behavior for the next generation of soft robots and devices.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipMax-Planck-Gesellschaft (Max Planck Society); European Research Council (ERC); Advanced Grant SoMMoR Project; ETH; Max Planck Center for Learning Systems
dc.description.versionPublished Version
dc.identifier.doi10.1038/s41467-025-58091-z
dc.identifier.eissn2041-1723
dc.identifier.embargoNo
dc.identifier.filenameinventorynoIR06043
dc.identifier.grantno834531
dc.identifier.issue1
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105000875039
dc.identifier.urihttps://doi.org/10.1038/s41467-025-58091-z
dc.identifier.urihttps://hdl.handle.net/20.500.14288/29110
dc.identifier.volume16
dc.identifier.wos001454467000015
dc.keywordsArtificial neural network
dc.keywordsMagnetization
dc.keywordsRobotics
dc.keywordsThree-dimensional modeling
dc.language.isoeng
dc.publisherNature Portfolio
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofNature Communications
dc.relation.openaccessYes
dc.rightsCC BY (Attribution)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectScience and technology
dc.titleData-driven design of shape-programmable magnetic soft materials
dc.typeJournal Article
dspace.entity.typePublication
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery17f2dc8e-6e54-4fa8-b5e0-d6415123a93e

Files