Publication:
Dataset: high-resolution event frame sequences for low-light vision

dc.conference.locationMilan
dc.contributor.coauthorErcan, Burak
dc.contributor.coauthorEker, Onur
dc.contributor.coauthorErdem, Erkut
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentKUIS AI (Koç University & İş Bank Artificial Intelligence Center)
dc.contributor.kuauthorErdem, Aykut
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2025-12-31T08:20:17Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractLow-light environments pose significant challenges for image enhancement methods. To address these challenges, in this work, we introduce the HUE dataset, a comprehensive collection of high-resolution event and frame sequences captured in diverse and challenging low-light conditions. Our dataset includes 106 sequences, encompassing indoor, cityscape, twilight, night, driving, and controlled scenarios, each carefully recorded to address various illumination levels and dynamic ranges. Utilizing a hybrid RGB and event camera setup. We collect a dataset that combines high-resolution event data with complementary frame data. We employ both qualitative and quantitative evaluations using no-reference metrics to assess state-of-the-art low-light enhancement and event-based image reconstruction methods. Additionally, we evaluate these methods on a downstream object detection task. Our findings reveal that while event-based methods perform well in specific metrics, they may produce false positives in practical applications. This dataset and our comprehensive analysis provide valuable insights for future research in low-light vision and hybrid camera systems.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TUBITAK, (121E454); Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TUBITAK
dc.identifier.doi10.1007/978-3-031-92460-6_11
dc.identifier.eissn0302-9743
dc.identifier.embargoNo
dc.identifier.endpage191
dc.identifier.grantno121E454
dc.identifier.issn1611-3349
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105018197485
dc.identifier.startpage174
dc.identifier.urihttps://doi.org/10.1007/978-3-031-92460-6_11
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31509
dc.identifier.volume15646 LNCS
dc.keywordsEvent-based vision
dc.keywordsHybrid camera system
dc.keywordsLow-light image enhancement
dc.language.isoeng
dc.publisherSpringer
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofLecture Notes in Computer Science
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectComputer Science
dc.titleDataset: high-resolution event frame sequences for low-light vision
dc.typeConference Proceeding
dspace.entity.typePublication
person.familyNameErdem
person.givenNameAykut
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication77d67233-829b-4c3a-a28f-bd97ab5c12c7
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files