Publication: Dataset: High-Resolution Event Frame Sequences for Low-Light Vision
| dc.conference.location | Milan | |
| dc.contributor.coauthor | Ercan, Burak (56613124700) | |
| dc.contributor.coauthor | Eker, Onur (57210948444) | |
| dc.contributor.coauthor | Erdem, Aykut (13410510300) | |
| dc.contributor.coauthor | Erdem, Erkut (13410837300) | |
| dc.date.accessioned | 2025-12-31T08:20:17Z | |
| dc.date.available | 2025-12-31 | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Low-light environments pose significant challenges for image enhancement methods. To address these challenges, in this work, we introduce the HUE dataset, a comprehensive collection of high-resolution event and frame sequences captured in diverse and challenging low-light conditions. Our dataset includes 106 sequences, encompassing indoor, cityscape, twilight, night, driving, and controlled scenarios, each carefully recorded to address various illumination levels and dynamic ranges. Utilizing a hybrid RGB and event camera setup. We collect a dataset that combines high-resolution event data with complementary frame data. We employ both qualitative and quantitative evaluations using no-reference metrics to assess state-of-the-art low-light enhancement and event-based image reconstruction methods. Additionally, we evaluate these methods on a downstream object detection task. Our findings reveal that while event-based methods perform well in specific metrics, they may produce false positives in practical applications. This dataset and our comprehensive analysis provide valuable insights for future research in low-light vision and hybrid camera systems. © 2025 Elsevier B.V., All rights reserved. | |
| dc.description.fulltext | Yes | |
| dc.description.harvestedfrom | Manual | |
| dc.description.indexedby | Scopus | |
| dc.description.publisherscope | International | |
| dc.description.readpublish | N/A | |
| dc.description.sponsoredbyTubitakEu | TÜBİTAK | |
| dc.description.sponsorship | Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TUBITAK, (121E454); Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TUBITAK | |
| dc.identifier.doi | 10.1007/978-3-031-92460-6_11 | |
| dc.identifier.eissn | 0302-9743 | |
| dc.identifier.embargo | No | |
| dc.identifier.endpage | 191 | |
| dc.identifier.isbn | 9789819698936 | |
| dc.identifier.isbn | 9789819698042 | |
| dc.identifier.isbn | 9789819698110 | |
| dc.identifier.isbn | 9789819698905 | |
| dc.identifier.isbn | 9789819512324 | |
| dc.identifier.isbn | 9783032026019 | |
| dc.identifier.isbn | 9783032008909 | |
| dc.identifier.isbn | 9783031915802 | |
| dc.identifier.isbn | 9789819698141 | |
| dc.identifier.isbn | 9783031984136 | |
| dc.identifier.issn | 1611-3349 | |
| dc.identifier.quartile | N/A | |
| dc.identifier.scopus | 2-s2.0-105018197485 | |
| dc.identifier.startpage | 174 | |
| dc.identifier.uri | https://doi.org/10.1007/978-3-031-92460-6_11 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14288/31509 | |
| dc.identifier.volume | 15646 LNCS | |
| dc.keywords | Event-based Vision | |
| dc.keywords | Hybrid Camera System | |
| dc.keywords | Low-light Image Enhancement | |
| dc.language.iso | eng | |
| dc.publisher | Springer Science and Business Media Deutschland GmbH | |
| dc.relation.affiliation | Koç University | |
| dc.relation.collection | Koç University Institutional Repository | |
| dc.relation.ispartof | Lecture Notes in Computer Science | |
| dc.relation.openaccess | Yes | |
| dc.rights | CC BY-NC-ND (Attribution-NonCommercial-NoDerivs) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.title | Dataset: High-Resolution Event Frame Sequences for Low-Light Vision | |
| dc.type | Conference Proceeding | |
| dspace.entity.type | Publication |
