Publication:
Dataset: High-Resolution Event Frame Sequences for Low-Light Vision

dc.conference.locationMilan
dc.contributor.coauthorErcan, Burak (56613124700)
dc.contributor.coauthorEker, Onur (57210948444)
dc.contributor.coauthorErdem, Aykut (13410510300)
dc.contributor.coauthorErdem, Erkut (13410837300)
dc.date.accessioned2025-12-31T08:20:17Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractLow-light environments pose significant challenges for image enhancement methods. To address these challenges, in this work, we introduce the HUE dataset, a comprehensive collection of high-resolution event and frame sequences captured in diverse and challenging low-light conditions. Our dataset includes 106 sequences, encompassing indoor, cityscape, twilight, night, driving, and controlled scenarios, each carefully recorded to address various illumination levels and dynamic ranges. Utilizing a hybrid RGB and event camera setup. We collect a dataset that combines high-resolution event data with complementary frame data. We employ both qualitative and quantitative evaluations using no-reference metrics to assess state-of-the-art low-light enhancement and event-based image reconstruction methods. Additionally, we evaluate these methods on a downstream object detection task. Our findings reveal that while event-based methods perform well in specific metrics, they may produce false positives in practical applications. This dataset and our comprehensive analysis provide valuable insights for future research in low-light vision and hybrid camera systems. © 2025 Elsevier B.V., All rights reserved.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TUBITAK, (121E454); Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TUBITAK
dc.identifier.doi10.1007/978-3-031-92460-6_11
dc.identifier.eissn0302-9743
dc.identifier.embargoNo
dc.identifier.endpage191
dc.identifier.isbn9789819698936
dc.identifier.isbn9789819698042
dc.identifier.isbn9789819698110
dc.identifier.isbn9789819698905
dc.identifier.isbn9789819512324
dc.identifier.isbn9783032026019
dc.identifier.isbn9783032008909
dc.identifier.isbn9783031915802
dc.identifier.isbn9789819698141
dc.identifier.isbn9783031984136
dc.identifier.issn1611-3349
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105018197485
dc.identifier.startpage174
dc.identifier.urihttps://doi.org/10.1007/978-3-031-92460-6_11
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31509
dc.identifier.volume15646 LNCS
dc.keywordsEvent-based Vision
dc.keywordsHybrid Camera System
dc.keywordsLow-light Image Enhancement
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofLecture Notes in Computer Science
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleDataset: High-Resolution Event Frame Sequences for Low-Light Vision
dc.typeConference Proceeding
dspace.entity.typePublication

Files