Publication: Dataset: high-resolution event frame sequences for low-light vision
| dc.conference.location | Milan | |
| dc.contributor.coauthor | Ercan, Burak | |
| dc.contributor.coauthor | Eker, Onur | |
| dc.contributor.coauthor | Erdem, Erkut | |
| dc.contributor.department | Department of Computer Engineering | |
| dc.contributor.department | KUIS AI (Koç University & İş Bank Artificial Intelligence Center) | |
| dc.contributor.kuauthor | Erdem, Aykut | |
| dc.contributor.schoolcollegeinstitute | College of Engineering | |
| dc.contributor.schoolcollegeinstitute | Research Center | |
| dc.date.accessioned | 2025-12-31T08:20:17Z | |
| dc.date.available | 2025-12-31 | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Low-light environments pose significant challenges for image enhancement methods. To address these challenges, in this work, we introduce the HUE dataset, a comprehensive collection of high-resolution event and frame sequences captured in diverse and challenging low-light conditions. Our dataset includes 106 sequences, encompassing indoor, cityscape, twilight, night, driving, and controlled scenarios, each carefully recorded to address various illumination levels and dynamic ranges. Utilizing a hybrid RGB and event camera setup. We collect a dataset that combines high-resolution event data with complementary frame data. We employ both qualitative and quantitative evaluations using no-reference metrics to assess state-of-the-art low-light enhancement and event-based image reconstruction methods. Additionally, we evaluate these methods on a downstream object detection task. Our findings reveal that while event-based methods perform well in specific metrics, they may produce false positives in practical applications. This dataset and our comprehensive analysis provide valuable insights for future research in low-light vision and hybrid camera systems. | |
| dc.description.fulltext | Yes | |
| dc.description.harvestedfrom | Manual | |
| dc.description.indexedby | Scopus | |
| dc.description.publisherscope | International | |
| dc.description.readpublish | N/A | |
| dc.description.sponsoredbyTubitakEu | TÜBİTAK | |
| dc.description.sponsorship | Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TUBITAK, (121E454); Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TUBITAK | |
| dc.identifier.doi | 10.1007/978-3-031-92460-6_11 | |
| dc.identifier.eissn | 0302-9743 | |
| dc.identifier.embargo | No | |
| dc.identifier.endpage | 191 | |
| dc.identifier.grantno | 121E454 | |
| dc.identifier.issn | 1611-3349 | |
| dc.identifier.quartile | N/A | |
| dc.identifier.scopus | 2-s2.0-105018197485 | |
| dc.identifier.startpage | 174 | |
| dc.identifier.uri | https://doi.org/10.1007/978-3-031-92460-6_11 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14288/31509 | |
| dc.identifier.volume | 15646 LNCS | |
| dc.keywords | Event-based vision | |
| dc.keywords | Hybrid camera system | |
| dc.keywords | Low-light image enhancement | |
| dc.language.iso | eng | |
| dc.publisher | Springer | |
| dc.relation.affiliation | Koç University | |
| dc.relation.collection | Koç University Institutional Repository | |
| dc.relation.ispartof | Lecture Notes in Computer Science | |
| dc.relation.openaccess | Yes | |
| dc.rights | CC BY-NC-ND (Attribution-NonCommercial-NoDerivs) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject | Computer Science | |
| dc.title | Dataset: high-resolution event frame sequences for low-light vision | |
| dc.type | Conference Proceeding | |
| dspace.entity.type | Publication | |
| person.familyName | Erdem | |
| person.givenName | Aykut | |
| relation.isOrgUnitOfPublication | 89352e43-bf09-4ef4-82f6-6f9d0174ebae | |
| relation.isOrgUnitOfPublication | 77d67233-829b-4c3a-a28f-bd97ab5c12c7 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 89352e43-bf09-4ef4-82f6-6f9d0174ebae | |
| relation.isParentOrgUnitOfPublication | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 | |
| relation.isParentOrgUnitOfPublication | d437580f-9309-4ecb-864a-4af58309d287 | |
| relation.isParentOrgUnitOfPublication.latestForDiscovery | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 |
