Publication:
Optimized high-throughput screening of non-coding variants identified from genome-wide association studies

dc.contributor.coauthorMorova, Tunc
dc.contributor.coauthorDing, Yi
dc.contributor.coauthorHuang, Chia-Chi F.
dc.contributor.coauthorSar, Funda
dc.contributor.coauthorSchwarz, Tommer
dc.contributor.coauthorGiambartolomei, Claudia
dc.contributor.coauthorBaca, Sylvan C.
dc.contributor.coauthorGrishin, Dennis
dc.contributor.coauthorHach, Faraz
dc.contributor.coauthorGusev, Alexander
dc.contributor.coauthorFreedman, Matthew L.
dc.contributor.coauthorPasaniuc, Bogdan
dc.contributor.departmentKUTTAM (Koç University Research Center for Translational Medicine)
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorLack, Nathan Alan
dc.contributor.schoolcollegeinstituteResearch Center
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-11-09T23:03:01Z
dc.date.issued2022
dc.description.abstractThe vast majority of disease-associated single nucleotide polymorphisms (SNP) identified from genome-wide association studies (GWAS) are localized in non-coding regions. A significant fraction of these variants impact transcription factors binding to enhancer elements and alter gene expression. To functionally interrogate the activity of such variants we developed snpSTARRseq, a high-throughput experimental method that can interrogate the functional impact of hundreds to thousands of non-coding variants on enhancer activity. snpSTARRseq dramatically improves signal-to-noise by utilizing a novel sequencing and bioinformatic approach that increases both insert size and the number of variants tested per loci. Using this strategy, we interrogated known prostate cancer (PCa) risk-associated loci and demonstrated that 35% of them harbor SNPs that significantly altered enhancer activity. Combining these results with chromosomal looping data we could identify interacting genes and provide a mechanism of action for 20 PCa GWAS risk regions. When benchmarked to orthogonal methods, snpSTARRseq showed a strong correlation with in vivo experimental allelic-imbalance studies whereas there was no correlation with predictive in silico approaches. Overall, snpSTARRseq provides an integrated experimental and computational framework to functionally test non-coding genetic variants.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1093/nar/gkac1198
dc.identifier.eissn1362-4962
dc.identifier.issn0305-1048
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85159711358
dc.identifier.urihttps://doi.org/10.1093/nar/gkac1198
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8386
dc.identifier.wos900251100001
dc.keywordsImpact
dc.keywordsPredict
dc.language.isoeng
dc.publisherOxford University Press (OUP)
dc.relation.ispartofNucleic Acids Research
dc.subjectBiochemistry
dc.subjectMolecular biology
dc.titleOptimized high-throughput screening of non-coding variants identified from genome-wide association studies
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorLack, Nathan Alan
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit1Research Center
local.publication.orgunit2KUTTAM (Koç University Research Center for Translational Medicine)
local.publication.orgunit2School of Medicine
relation.isOrgUnitOfPublication91bbe15d-017f-446b-b102-ce755523d939
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscovery91bbe15d-017f-446b-b102-ce755523d939
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscoveryd437580f-9309-4ecb-864a-4af58309d287

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR04171.pdf
Size:
3.25 MB
Format:
Adobe Portable Document Format