Publication:
Variations on criteria of Pólya and Turán for the Riemann hypothesis

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorAlkan, Emre
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T23:27:53Z
dc.date.issued2021
dc.description.abstractwhere lambda(n) is the Liouville function. Then famous criteria of Polya and Turin claim that the eventual sign constancy of each of L0(x) and L1(x) alone implies the Riemann hypothesis. However, Haselgrove disproved the eventual sign constancy hypothesis. As a remedy for this, we show that the eventual negativity of each of L alpha(x), L'alpha(x), L'Zt(x) for all 1/2 < alpha < 1 is equivalent to the Riemann hypothesis. Analogous equivalent conditions for the Riemann hypothesis are formulated in terms of partial sums of the Mobius function as well. Our criteria indicate a new tendency concerning the values of the Liouville and Mobius functions in stark contrast with their random behavior. Further generalizations are given in two essential directions, namely that equivalent criteria are developed for any quasi-Riemann hypothesis, and we allow the partial sums to be supported on semigroups after sifting out integers divisible by members of a set of prime numbers whose size is under control. Our negativity conditions for the quasi-Riemann hypothesis exhibit a curious rigidity in two respects, first it doesn't matter which particular primes we use to sift out, but only the size of the set, second the sign of the partial sums is unaltered with respect to two successive derivatives. Finally, other competing necessary or sufficient conditions for a quasi-Riemann hypothesis are studied regarding the monotonicity, zeros and sign changes of partial sums of Dirichlet series. (c) 2021 Elsevier Inc. All rights reserved.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume225
dc.identifier.doi10.1016/j.jnt.2021.01.004
dc.identifier.eissn1096-1658
dc.identifier.issn0022-314X
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-85102598366
dc.identifier.urihttps://doi.org/10.1016/j.jnt.2021.01.004
dc.identifier.urihttps://hdl.handle.net/20.500.14288/11774
dc.identifier.wos651605300004
dc.keywordsLiouville function
dc.keywords
dc.keywordsBius function
dc.keywordsRiemann hypothesis
dc.keywordsQuasi-Riemann hypothesis
dc.keywordsPól
dc.keywordsYa
dc.keywordsS criterion
dc.keywordsTurá
dc.keywordsN
dc.keywordsS criterion
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofJournal of Number Theory
dc.subjectMathematics
dc.titleVariations on criteria of Pólya and Turán for the Riemann hypothesis
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorAlkan, Emre
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files