Publication:
A deep learning model for automated segmentation of fluorescence cell images

dc.contributor.coauthorAydın, Musa
dc.contributor.coauthorKiraz, Berna
dc.contributor.coauthorEren, Furkan
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Physics
dc.contributor.departmentN/A
dc.contributor.departmentN/A
dc.contributor.departmentN/A
dc.contributor.kuauthorAyhan, Ceyda Açılan
dc.contributor.kuauthorKiraz, Alper
dc.contributor.kuauthorUysallı, Yiğit
dc.contributor.kuauthorMorova, Berna
dc.contributor.kuauthorÖzcan, Selahattin Can
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileResearcher
dc.contributor.kuprofileResearcher
dc.contributor.otherDepartment of Physics
dc.contributor.researchcenterKoç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM)
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteN/A
dc.contributor.schoolcollegeinstituteN/A
dc.contributor.yokid219658
dc.contributor.yokid22542
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T22:57:13Z
dc.date.issued2022
dc.description.abstractDeep learning techniques bring together key advantages in biomedical image segmentation. They speed up the process, increase the reproducibility, and reduce the workload in segmentation and classifcation. Deep learning techniques can be used for analysing cell concentration, cell viability, as well as the size and form of each cell. In this study, we develop a deep learning model for automated segmentation of fuorescence cell images, and apply it to fuorescence images recorded with a home-built epi-fuorescence microscope. A deep neural network model based on U-Net architecture was built using a publicly available dataset of cell nuclei images [1]. A model accuracy of 97.3% was reached at the end of model training. Fluorescence cell images acquired with our home-built microscope were then segmented using the developed model. 141 of 151 cells in 5 images were successfully segmented, revealing a segmentation success rate of 93.4%. This deep learning model can be extended to the analysis of diferent cell types and cell viability. © 2021 Published under licence by IOP Publishing Ltd.
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsorshipWe acknowledge financial supports from TUB¨ ˙ITAK (Project No: 7190434) and KOSGEB. A. Kiraz acknowledges partial support from the Turkish Academy of Sciences (TUBA).
dc.description.volume2191
dc.identifier.doi10.1088/1742-6596/2191/1/012003
dc.identifier.issn1742-6588
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85124988437&doi=10.1088%2f1742-6596%2f2191%2f1%2f012003&partnerID=40&md5=964ead13f966850d6125924ff08691aa
dc.identifier.scopus2-s2.0-85124988437
dc.identifier.urihttp://dx.doi.org/10.1088/1742-6596/2191/1/012003
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7516
dc.keywordsCells
dc.keywordsCytology
dc.keywordsDeep neural networks
dc.keywordsFluorescence
dc.keywordsImage segmentation
dc.keywordsAutomated segmentation
dc.keywordsBiomedical image segmentation
dc.keywordsCell images
dc.keywordsCell viability
dc.keywordsFluorescence cell
dc.keywordsHome-built
dc.keywordsLearning models
dc.keywordsLearning techniques
dc.keywordsReproducibilities
dc.keywordsSpeed up
dc.keywordsLearning algorithms
dc.languageEnglish
dc.publisherIOP Publishing Ltd
dc.sourceJournal of Physics: Conference Series
dc.subjectObject detection
dc.subjectDeep learning
dc.subjectIOU
dc.titleA deep learning model for automated segmentation of fluorescence cell images
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-8936-3267
local.contributor.authorid0000-0001-7977-1286
local.contributor.authorid0000-0003-3369-4769
local.contributor.authorid0000-0003-1293-7362
local.contributor.authorid0000-0003-1733-4288
local.contributor.kuauthorAyhan, Ceyda Açılan
local.contributor.kuauthorKiraz, Alper
local.contributor.kuauthorUysallı, Yiğit
local.contributor.kuauthorMorova, Berna
local.contributor.kuauthorÖzcan, Selahattin Can
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4

Files