Publication:
Intelligent edge computing: state-of-the-art techniques and applications

dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentN/A
dc.contributor.kuauthorGürsoy, Attila
dc.contributor.kuauthorÖzkasap, Öznur
dc.contributor.kuauthorGill, Waris
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofilePhD Student
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid8745
dc.contributor.yokid113507
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:39:18Z
dc.date.issued2020
dc.description.abstractTo enable intelligent decisions at the network edge, supervised and unsupervised machine learning techniques and their variations are highly utilized in recent research studies. These include techniques and the corresponding applications such as detecting manufacturing faults in a smart factory setting, monitoring patient activities and health problems in smart health systems, detecting security attacks on the Internet of Things devices, and finding the rare events in the audio signals. In this paper, we present an extensive review of state-of-the-art techniques and applications of intelligent edge computing and provide classification and discussion of various approaches in this field.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/SIU49456.2020.9302149
dc.identifier.isbn9781-7281-7206-4
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85100299211&doi=10.1109%2fSIU49456.2020.9302149&partnerID=40&md5=776e3e912ce2cc36349eb6b61df9f864
dc.identifier.scopus2-s2.0-85100299211
dc.identifier.urihttps://dx.doi.org/10.1109/SIU49456.2020.9302149
dc.identifier.urihttps://hdl.handle.net/20.500.14288/13074
dc.identifier.wos653136100123
dc.keywordsDistributed systems
dc.keywordsIntelligent edge computing
dc.keywordsSupervised learning
dc.keywordsUnsupervised learning Audio systems
dc.keywordsEdge computing
dc.keywordsIntelligent computing
dc.keywordsLearning systems
dc.keywordsPatient monitoring
dc.keywordsHealth systems
dc.keywordsIntelligent decisions
dc.keywordsNetwork edges
dc.keywordsPatient activities
dc.keywordsRecent researches
dc.keywordsSecurity attacks
dc.keywordsState-of-the-art techniques
dc.keywordsUnsupervised machine learning
dc.keywordsSignal processing
dc.languageTurkish
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.source2020 28th Signal Processing and Communications Applications Conference, SIU 2020 - Proceedings
dc.subjectEdge computing
dc.subjectComputer networks
dc.subjectInternet of things
dc.subjectWireless localization
dc.titleIntelligent edge computing: state-of-the-art techniques and applications
dc.title.alternativeSınır-bulut tabanlı erişim ağ altyapısı üzerinden çok-taraflı videokonferans servisi
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-2297-2113
local.contributor.authorid0000-0003-4343-0986
local.contributor.authoridN/A
local.contributor.kuauthorGürsoy, Attila
local.contributor.kuauthorÖzkasap, Öznur
local.contributor.kuauthorGill, Waris
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files