Publication:
A tissue adhesion-controllable and biocompatible small-scale hydrogel adhesive robot

dc.contributor.coauthorLee, Y.W.
dc.contributor.coauthorChun, S.
dc.contributor.coauthorSon, D.
dc.contributor.coauthorHu, X.
dc.contributor.coauthorSchneider, M.
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.yokid297104
dc.date.accessioned2024-11-09T13:07:27Z
dc.date.issued2022
dc.description.abstractRecently, the realization of minimally invasive medical interventions on targeted tissues using wireless small-scale medical robots has received an increasing attention. For effective implementation, such robots should have a strong adhesion capability to biological tissues and at the same time easy controlled detachment should be possible, which has been challenging. To address such issue, a small-scale soft robot with octopus-inspired hydrogel adhesive (OHA) is proposed. Hydrogels of different Young's moduli are adapted to achieve a biocompatible adhesive with strong wet adhesion by preventing the collapse of the octopus-inspired patterns during preloading. Introduction of poly(N-isopropylacrylamide) hydrogel for dome-like protuberance structure inside the sucker wall of polyethylene glycol diacrylate hydrogel provides a strong tissue attachment in underwater and at the same time enables easy detachment by temperature changes due to its temperature-dependent volume change property. It is finally demonstrated that the small-scale soft OHA robot can efficiently implement biomedical functions owing to strong adhesion and controllable detachment on biological tissues while operating inside the body. Such robots with repeatable tissue attachment and detachment possibility pave the way for future wireless soft miniature robots with minimally invasive medical interventions.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue13
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipMax Planck Society
dc.description.sponsorshipInternational Max Planck Research School for Intelligent Systems
dc.description.sponsorshipAlexander von Humboldt Foundation
dc.description.sponsorshipProjekt DEAL
dc.description.versionPublisher version
dc.description.volume34
dc.formatpdf
dc.identifier.doi10.1002/adma.202109325
dc.identifier.eissn1521-4095
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03614
dc.identifier.issn0935-9648
dc.identifier.linkhttps://doi.org/10.1002/adma.202109325
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85124709967
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2597
dc.identifier.wos757662400001
dc.keywordsDry adhesive
dc.keywordsReversible hydrogel adhesive
dc.keywordsSoft robotstissue adhesion
dc.keywordsWireless miniature medical robot
dc.languageEnglish
dc.publisherWiley
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10471
dc.sourceAdvanced Materials
dc.subjectChemistry
dc.subjectScience and technology
dc.subjectOther topics
dc.subjectMaterials science
dc.subjectPhysics
dc.titleA tissue adhesion-controllable and biocompatible small-scale hydrogel adhesive robot
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-8249-3854
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10471.pdf
Size:
4.14 MB
Format:
Adobe Portable Document Format