Publication: HiSEG: Human assisted instance segmentation
Program
KU-Authors
Sezgin, Tevfik Metin
KU Authors
Co-Authors
Publication Date
Language
Type
Embargo Status
Journal Title
Journal ISSN
Volume Title
Alternative Title
Abstract
Instance segmentation is a form of image detection which has a range of applications, such as object refinement, medical image analysis, and image/video editing, all of which demand a high degree of accuracy. However, this precision is often beyond the reach of what even state-of-the-art, fully automated instance segmentation algorithms can deliver. The performance gap becomes particularly prohibitive for small and complex objects. Practitioners typically resort to fully manual annotation, which can be a laborious process. In order to overcome this problem, we propose a novel approach to enable more precise predictions and generate higher-quality segmentation masks for high-curvature, complex and small-scale objects. Our human-assisted segmentation method, HiSEG, augments the existing Strong Mask R-CNN network to incorporate human-specified partial boundaries. We also present a dataset of hand-drawn partial object boundaries, which we refer to as “human attention maps”. In addition, the Partial Sketch Object Boundaries (PSOB) dataset contains hand-drawn partial object boundaries which represent curvatures of an object's ground truth mask with several pixels. Through extensive evaluation using the PSOB dataset, we show that HiSEG outperforms state-of-the art methods such as Mask R-CNN, Strong Mask R-CNN, Mask2Former, and Segment Anything, achieving respective increases of +42.0, +34.9, +29.9, and +13.4 points in APMask metrics for these four models. We hope that our novel approach will set a baseline for future human-aided deep learning models by combining fully automated and interactive instance segmentation architectures.
Source
Publisher
Elsevier Ltd
Subject
Computer engineering
Citation
Has Part
Source
Computers and Graphics
Book Series Title
Edition
DOI
10.1016/j.cag.2024.104061