Publication:
Rattling in the cage: Ions as probes of sub-picosecond water network dynamics

dc.contributor.coauthorSchmidt, Diedrich A.
dc.contributor.coauthorFunkner, Stefan
dc.contributor.coauthorBorn, Benjamin P.
dc.contributor.coauthorGnanasekaran, Ramachandran
dc.contributor.coauthorSchwaab, Gerhard W.
dc.contributor.coauthorLeitner, David M.
dc.contributor.coauthorHavenith, Martina
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorBirer, Özgür
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Chemistry
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokidN/A
dc.date.accessioned2024-11-10T00:12:20Z
dc.date.issued2009
dc.description.abstractWe present terahertz (THz) measurements of salt solutions that shed new light on the controversy over whether salts act as kosmotropes (structure makers) or chaotropes (structure breakers), which enhance or reduce the solvent order, respectively. We have carried out precise measurements of the concentrationdependent THz absorption coefficient of 15 solvated alkali halide salts around 85 cm-1 (2.5 THz). In addition, we recorded overview spectra between 30 and 300 cm-1 using a THz Fourier transform spectrometer for six alkali halides. For all solutions we found a linear increase of THz absorption compared to pure water (THz excess) with increasing solute concentration. These results suggest that the ions may be treated as simple defects in an H-bond network. They therefore cannot be characterized as either kosmotropes or chaotropes. Below 200 cm-1, the observed THz excess of all salts can be described by a linear superposition of the water absorption and an additional absorption that is attributed to a rattling motion of the ions within the water network. By providing a comprehensive set of data for different salt solutions, we find that the solutions can all be very well described by a model that includes damped harmonic oscillations of the anions and cations within the water network. We find this model predicts the main features of THz spectra for a variety of salt solutions. The assumption of the existence of these ion rattling motions on sub-picosecond time scales is supported by THz Fourier transform spectroscopy of six alkali halides. Above 200 cm-1 the excess is interpreted in terms of a change in the wing of the water network librational mode. Accompanying molecular dynamics simulations using the TIP3P water model support our conclusion and show that the fast sub-picosecond motions of the ions and their surroundings are almost decoupled. These findings provide a complete description of the solute-induced changes in the THz solvation dynamics for the investigated salts. Our results show that THz spectroscopy is a powerful experimental tool to establish a new view on the contributions of anions and cations to the structuring of water. © 2009 American Chemical Society.
dc.description.indexedbyScopus
dc.description.issue51
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.volume131
dc.identifier.doi10.1021/ja9083545
dc.identifier.eissn1520-5126
dc.identifier.issn0002-7863
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-73249125192&doi=10.1021%2fja9083545&partnerID=40&md5=9846e7b0aa34e0386830bbda52b63ad0
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-73249125192
dc.identifier.urihttp://dx.doi.org/10.1021/ja9083545
dc.identifier.urihttps://hdl.handle.net/20.500.14288/17642
dc.keywordsAbsorption coefficients
dc.keywordsAlkali halide salts
dc.keywordsChaotropes
dc.keywordsConcentration-dependent
dc.keywordsFourier transform spectrometers
dc.keywordsFourier transform spectroscopy
dc.keywordsH-bond network
dc.keywordsHarmonic oscillation
dc.keywordsLibrational modes
dc.keywordsLinear superpositions
dc.keywordsMolecular dynamics simulations
dc.keywordsPicosecond time scale
dc.keywordsPicoseconds
dc.keywordsPrecise measurements
dc.keywordsPure water
dc.keywordsRattling motion
dc.keywordsSalt solution
dc.keywordsSolute concentrations
dc.keywordsSolvation dynamics
dc.keywordsStructure makers
dc.keywordsStructure-breakers
dc.keywordsTerahertz
dc.keywordsThz spectroscopy
dc.keywordsWater models
dc.keywordsWater networks
dc.keywordsAlkali halides
dc.keywordsFourier transforms
dc.keywordsFused silica
dc.keywordsMathematical transformations
dc.keywordsMolecular dynamics
dc.keywordsPositive ions
dc.keywordsSalts
dc.keywordsSpectroscopy
dc.keywordsWater absorption
dc.keywordsAlkali
dc.keywordsAnion
dc.keywordsBromine
dc.keywordsCation
dc.keywordsCesium
dc.keywordsChlorine
dc.keywordsHalide
dc.keywordsHydrogen
dc.keywordsIodine
dc.keywordsIon
dc.keywordsLithium
dc.keywordsPotassium
dc.keywordsRubidium
dc.keywordsSodium chloride
dc.keywordsSolvent
dc.keywordsWater
dc.keywordsArticle
dc.keywordsControlled study
dc.keywordsFourier transform mass spectrometry
dc.keywordsHydrogen bond
dc.keywordsMolecular dynamics
dc.keywordsMolecular probe
dc.keywordsPscillation
dc.keywordsPrediction
dc.keywordsSolute
dc.keywordsSolvation
dc.keywordsTerahertz spectroscopy
dc.keywordsWater absorption
dc.keywordsHydrogen bonding
dc.keywordsLons
dc.keywordsMolecular dynamics simulation
dc.keywordsMolecular probes
dc.keywordsMolecular structure
dc.keywordsSalts
dc.keywordsSpectrum analysis
dc.keywordsTime factors
dc.keywordsWater
dc.languageEnglish
dc.publisherAmerican Chemical Society (ACS)
dc.sourceJournal of the American Chemical Society
dc.subjectChemistry
dc.titleRattling in the cage: Ions as probes of sub-picosecond water network dynamics
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorBirer, Özgür
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb

Files