Publication:
AI-KU: using co-occurrence modeling for semantic similarity

dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorBaşkaya, Osman
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T11:57:34Z
dc.date.issued2014
dc.description.abstractIn this paper, we describe our unsupervised method submitted to the Cross-Level Semantic Similarity task in Semeval 2014 that computes semantic similarity between two different sized text fragments. Our method models each text fragment by using the co-occurrence statistics of either occurred words or their substitutes. The co-occurrence modeling step provides dense, low-dimensional embedding for each fragment which allows us to calculate semantic similarity using various similarity metrics. Although our current model avoids the syntactic information, we achieved promising results and outperformed all baselines.
dc.description.fulltextYES
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionPublisher version
dc.formatpdf
dc.identifier.doi10.3115/v1/S14-2011
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03426
dc.identifier.isbn9.78194E+12
dc.identifier.linkhttps://doi.org/10.3115/v1/S14-2011
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85122033302
dc.identifier.urihttps://hdl.handle.net/20.500.14288/878
dc.keywordsCo-occurrence
dc.keywordsCo-occurrence statistics
dc.keywordsCross levels
dc.keywordsLow dimensional embedding
dc.keywordsMethod model
dc.keywordsOccurrence model
dc.keywordsSemantic similarity
dc.keywordsSimilarity metrics
dc.keywordsText fragments
dc.keywordsUnsupervised method
dc.languageEnglish
dc.publisherAssociation for Computational Linguistics (ACL)
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10219
dc.source8th International Workshop on Semantic Evaluation, SemEval 2014 - co-located with the 25th International Conference on Computational Linguistics, COLING 2014, Proceedings
dc.subjectWord sense disambiguation
dc.subjectNamed entity
dc.subjectEntity linking
dc.titleAI-KU: using co-occurrence modeling for semantic similarity
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.kuauthorBaşkaya, Osman
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10219.pdf
Size:
116.52 KB
Format:
Adobe Portable Document Format