Publication: Team Howard Beale at SemEval-2019 task 4: hyperpartisan news detection with BERT
dc.contributor.coauthor | Dayanık, Erenay | |
dc.contributor.department | Department of Computer Engineering | |
dc.contributor.department | Graduate School of Sciences and Engineering | |
dc.contributor.kuauthor | Can, Ozan Arkan | |
dc.contributor.kuauthor | Mutlu, Osman | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | GRADUATE SCHOOL OF SCIENCES AND ENGINEERING | |
dc.date.accessioned | 2024-11-09T12:39:56Z | |
dc.date.issued | 2019 | |
dc.description.abstract | This paper describes our system for SemEval-2019 Task 4: Hyperpartisan News Detection (Kiesel et al., 2019). We use pretrained BERT (Devlin et al., 2018) architecture and investigate the effect of different fine tuning regimes on the final classification task. We show that additional pretraining on news domain improves the performance on the Hyperpartisan News Detection task. Our system1 ranked 8th out of 42 teams with 78.3% accuracy on the held-out test dataset. | |
dc.description.fulltext | YES | |
dc.description.indexedby | Scopus | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | EU | |
dc.description.sponsorship | European Union (EU) | |
dc.description.sponsorship | Horizon 2020 | |
dc.description.sponsorship | European Research Council (ERC) | |
dc.description.sponsorship | Starting Grant | |
dc.description.version | Publisher version | |
dc.identifier.doi | 10.18653/v1/S19-2175 | |
dc.identifier.embargo | NO | |
dc.identifier.filenameinventoryno | IR03351 | |
dc.identifier.isbn | 9.78195E+12 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-85118547951 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/2144 | |
dc.keywords | Classification | |
dc.keywords | Computational linguistics | |
dc.keywords | Semantics | |
dc.language.iso | eng | |
dc.publisher | Association for Computational Linguistics (ACL) | |
dc.relation.grantno | 714868 | |
dc.relation.ispartof | Proceedings of the 13th Workshop on Semantic Evaluation | |
dc.relation.uri | http://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10137 | |
dc.subject | Embedding | |
dc.subject | Named entity recognition | |
dc.subject | Entailment | |
dc.title | Team Howard Beale at SemEval-2019 task 4: hyperpartisan news detection with BERT | |
dc.type | Conference Proceeding | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Mutlu, Osman | |
local.contributor.kuauthor | Can, Ozan Arkan | |
local.publication.orgunit1 | GRADUATE SCHOOL OF SCIENCES AND ENGINEERING | |
local.publication.orgunit1 | College of Engineering | |
local.publication.orgunit2 | Department of Computer Engineering | |
local.publication.orgunit2 | Graduate School of Sciences and Engineering | |
relation.isOrgUnitOfPublication | 89352e43-bf09-4ef4-82f6-6f9d0174ebae | |
relation.isOrgUnitOfPublication | 3fc31c89-e803-4eb1-af6b-6258bc42c3d8 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 89352e43-bf09-4ef4-82f6-6f9d0174ebae | |
relation.isParentOrgUnitOfPublication | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 | |
relation.isParentOrgUnitOfPublication | 434c9663-2b11-4e66-9399-c863e2ebae43 | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 |
Files
Original bundle
1 - 1 of 1