Publication:
Team Howard Beale at SemEval-2019 task 4: hyperpartisan news detection with BERT

dc.contributor.coauthorDayanık, Erenay
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorCan, Ozan Arkan
dc.contributor.kuauthorMutlu, Osman
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T12:39:56Z
dc.date.issued2019
dc.description.abstractThis paper describes our system for SemEval-2019 Task 4: Hyperpartisan News Detection (Kiesel et al., 2019). We use pretrained BERT (Devlin et al., 2018) architecture and investigate the effect of different fine tuning regimes on the final classification task. We show that additional pretraining on news domain improves the performance on the Hyperpartisan News Detection task. Our system1 ranked 8th out of 42 teams with 78.3% accuracy on the held-out test dataset.
dc.description.fulltextYES
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipStarting Grant
dc.description.versionPublisher version
dc.identifier.doi10.18653/v1/S19-2175
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03351
dc.identifier.isbn9.78195E+12
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85118547951
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2144
dc.keywordsClassification
dc.keywordsComputational linguistics
dc.keywordsSemantics
dc.language.isoeng
dc.publisherAssociation for Computational Linguistics (ACL)
dc.relation.grantno714868
dc.relation.ispartofProceedings of the 13th Workshop on Semantic Evaluation
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10137
dc.subjectEmbedding
dc.subjectNamed entity recognition
dc.subjectEntailment
dc.titleTeam Howard Beale at SemEval-2019 task 4: hyperpartisan news detection with BERT
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorMutlu, Osman
local.contributor.kuauthorCan, Ozan Arkan
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Computer Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10137.pdf
Size:
270.33 KB
Format:
Adobe Portable Document Format