Publication:
Interspeech 2009 emotion recognition challenge evaluation

dc.contributor.coauthorErdem, Çiǧdem Eroǧlu
dc.contributor.coauthorErdem, A. Tanju
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentN/A
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuauthorBozkurt, Elif
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofilePhD Student
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid34503
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:53:55Z
dc.date.issued2010
dc.description.abstractIn this paper we evaluate INTERSPEECH 2009 Emotion Recognition Challenge results. The challenge presents the problem of accurate classification of natural and emotionally rich FAU Aibo recordings into five and two emotion classes. We evaluate prosody related, spectral and HMM-based features with Gaussian mixture model (GMM) classifiers to attack this problem. Spectral features consist of mel-scale cepstral coefficients (MFCC), line spectral frequency (LSF) features and their derivatives, whereas prosody-related features consist of pitch, first derivative of pitch and intensity. We employ unsupervised training of HMM structures with prosody related temporal features to define HMM-based features. We also investigate data fusion of different features and decision fusion of different classifiers to improve emotion recognition results. Our two-stage decision fusion method achieves 41.59 % and 67.90 % recall rate for the five and two-class problems, respectively and takes second and fourth place among the overall challenge results. ©2010 IEEE.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/SIU.2010.5649919
dc.identifier.isbn9781-4244-9671-6
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-78651427870anddoi=10.1109%2fSIU.2010.5649919andpartnerID=40andmd5=a9a2746653fe032147932fc9abbd1479
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-78651427870
dc.identifier.urihttp://dx.doi.org/10.1109/SIU.2010.5649919
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15108
dc.keywordsCepstral coefficients
dc.keywordsDecision fusion
dc.keywordsDecision fusion methods
dc.keywordsEmotion recognition
dc.keywordsFirst derivative
dc.keywordsGaussian Mixture Model
dc.keywordsLine spectral frequencies
dc.keywordsRecall rate
dc.keywordsSpectral feature
dc.keywordsTemporal features
dc.keywordsTwo stage
dc.keywordsUnsupervised training
dc.keywordsClassifiers
dc.keywordsData fusion
dc.keywordsFlight dynamics
dc.keywordsSignal processing
dc.keywordsFeature extraction
dc.languageTurkish
dc.publisherIEEE
dc.sourceSIU 2010 - IEEE 18th Signal Processing and Communications Applications Conference
dc.subjectComputer engineering
dc.titleInterspeech 2009 emotion recognition challenge evaluation
dc.title.alternativeInterspeech 2009 duygu tanıma yarışması deǧerlendirmesi
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-2715-2368
local.contributor.authoridN/A
local.contributor.kuauthorErzin, Engin
local.contributor.kuauthorBozkurt, Elif
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files