Publication: Interspeech 2009 emotion recognition challenge evaluation
dc.contributor.coauthor | Erdem, Çiǧdem Eroǧlu | |
dc.contributor.coauthor | Erdem, A. Tanju | |
dc.contributor.department | Department of Computer Engineering | |
dc.contributor.department | N/A | |
dc.contributor.kuauthor | Erzin, Engin | |
dc.contributor.kuauthor | Bozkurt, Elif | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.kuprofile | PhD Student | |
dc.contributor.other | Department of Computer Engineering | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | Graduate School of Sciences and Engineering | |
dc.contributor.yokid | 34503 | |
dc.contributor.yokid | N/A | |
dc.date.accessioned | 2024-11-09T23:53:55Z | |
dc.date.issued | 2010 | |
dc.description.abstract | In this paper we evaluate INTERSPEECH 2009 Emotion Recognition Challenge results. The challenge presents the problem of accurate classification of natural and emotionally rich FAU Aibo recordings into five and two emotion classes. We evaluate prosody related, spectral and HMM-based features with Gaussian mixture model (GMM) classifiers to attack this problem. Spectral features consist of mel-scale cepstral coefficients (MFCC), line spectral frequency (LSF) features and their derivatives, whereas prosody-related features consist of pitch, first derivative of pitch and intensity. We employ unsupervised training of HMM structures with prosody related temporal features to define HMM-based features. We also investigate data fusion of different features and decision fusion of different classifiers to improve emotion recognition results. Our two-stage decision fusion method achieves 41.59 % and 67.90 % recall rate for the five and two-class problems, respectively and takes second and fourth place among the overall challenge results. ©2010 IEEE. | |
dc.description.indexedby | Scopus | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.identifier.doi | 10.1109/SIU.2010.5649919 | |
dc.identifier.isbn | 9781-4244-9671-6 | |
dc.identifier.link | https://www.scopus.com/inward/record.uri?eid=2-s2.0-78651427870anddoi=10.1109%2fSIU.2010.5649919andpartnerID=40andmd5=a9a2746653fe032147932fc9abbd1479 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-78651427870 | |
dc.identifier.uri | http://dx.doi.org/10.1109/SIU.2010.5649919 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/15108 | |
dc.keywords | Cepstral coefficients | |
dc.keywords | Decision fusion | |
dc.keywords | Decision fusion methods | |
dc.keywords | Emotion recognition | |
dc.keywords | First derivative | |
dc.keywords | Gaussian Mixture Model | |
dc.keywords | Line spectral frequencies | |
dc.keywords | Recall rate | |
dc.keywords | Spectral feature | |
dc.keywords | Temporal features | |
dc.keywords | Two stage | |
dc.keywords | Unsupervised training | |
dc.keywords | Classifiers | |
dc.keywords | Data fusion | |
dc.keywords | Flight dynamics | |
dc.keywords | Signal processing | |
dc.keywords | Feature extraction | |
dc.language | Turkish | |
dc.publisher | IEEE | |
dc.source | SIU 2010 - IEEE 18th Signal Processing and Communications Applications Conference | |
dc.subject | Computer engineering | |
dc.title | Interspeech 2009 emotion recognition challenge evaluation | |
dc.title.alternative | Interspeech 2009 duygu tanıma yarışması deǧerlendirmesi | |
dc.type | Conference proceeding | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0002-2715-2368 | |
local.contributor.authorid | N/A | |
local.contributor.kuauthor | Erzin, Engin | |
local.contributor.kuauthor | Bozkurt, Elif | |
relation.isOrgUnitOfPublication | 89352e43-bf09-4ef4-82f6-6f9d0174ebae | |
relation.isOrgUnitOfPublication.latestForDiscovery | 89352e43-bf09-4ef4-82f6-6f9d0174ebae |