Publication:
Machine learning aided path loss estimator and jammer detector for heterogeneous vehicular networks

dc.contributor.coauthorN/A
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.departmentKUFOTAL (Koc University Ford Otosan Automotive Technologies Laboratory)
dc.contributor.kuauthorErgen, Sinem Çöleri
dc.contributor.kuauthorKar, Emrah
dc.contributor.kuauthorKoç, Osman Nuri
dc.contributor.kuauthorTuran, Buğra
dc.contributor.kuauthorUyrus, Ali
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteLaboratory
dc.date.accessioned2024-11-09T22:59:36Z
dc.date.issued2021
dc.description.abstractHeterogeneous vehicular communications aim to improve the reliability, security and delay performance of vehicle-to-vehicle (V2V) communications, by utilizing multiple communication technologies. Predicting the path loss through conventional fitting based models and radio frequency (RF) jamming detection through rule based models of different communication schemes fail to address comprehensive mobility and jamming scenarios. In this paper, we propose a machine learning based adaptive link quality estimation and jamming detection scheme for the optimum selection and aggregation of IEEE 802.11p and Vehicular Visible Light Communications (V-VLC) technologies targeting reliable V2V communications. We propose to use Random Forest regression and classifier based algorithms, where multiple individual learners with diversity are trained by using measurement data and the final result is obtained by averaging outputs of all learners. We test our framework on real-world road measurement data, demonstrating up to 234 dB and 0.56 dB Mean Absolute Error (MAE) improvement for V-VLC and IEEE 802.11p path loss prediction compared to fitting based models, respectively. The proposed jamming presence detection scheme yields 88.3% accuracy to detect noise interference injection for IEEE 802.11p links, yielding 3% better prediction performance than previously proposed deep convolutional neural network (DCNN) based scheme.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipCHIST-ERA grant [CHISTERA-18-SDCDN-001]
dc.description.sponsorshipScientific and Technological Council of Turkey [119E350]
dc.description.sponsorshipFord Otosan This work was supported by CHIST-ERA grant CHISTERA-18-SDCDN-001, the Scientific and Technological Council of Turkey 119E350 and Ford Otosan.
dc.identifier.doi10.1109/GLOBECOM46510.2021.9685428
dc.identifier.eissn2576-6813
dc.identifier.isbn978-1-7281-8104-2
dc.identifier.issn2334-0983
dc.identifier.scopus2-s2.0-85184639645
dc.identifier.urihttps://doi.org/10.1109/GLOBECOM46510.2021.9685428
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7921
dc.identifier.wos790747202036
dc.keywordsVehicular visible light communication (V-VLC)
dc.keywordsVehicular communications
dc.keywordsHeterogeneous communications
dc.keywordsIEEE 802.11p
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2021 Ieee Global Communications Conference (Globecom)
dc.subjectComputer science
dc.subjectInformation systems
dc.subjectEngineering
dc.subjectElectrical and electronic engineering
dc.subjectTelecommunications
dc.titleMachine learning aided path loss estimator and jammer detector for heterogeneous vehicular networks
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorTuran, Buğra
local.contributor.kuauthorUyrus, Ali
local.contributor.kuauthorKoç, Osman Nuri
local.contributor.kuauthorKar, Emrah
local.contributor.kuauthorErgen, Sinem Çöleri
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication83bd17a8-82d2-4e94-83f5-a68e162cd542
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication20385dee-35e7-484b-8da6-ddcc08271d96
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files