Publication:
A compact, elastomeric multimodal sensor for tactile softness discrimination

dc.contributor.coauthorBerman, Arielle
dc.contributor.coauthorShi, Baiyu
dc.contributor.coauthorKim, Eunyoung
dc.contributor.coauthorRoot, Samuel E.
dc.contributor.coauthorXu, Chengyi
dc.contributor.coauthorBao, Zhenan
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorBeker, Levent
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2026-01-16T08:45:31Z
dc.date.available2026-01-16
dc.date.issued2025
dc.description.abstractReplicating the natural ability to perceive softness in skin-inspired tactile sensors is vital for the advancement of robotic manipulation and object classification. Humans sense softness through the activation of specific skin receptors, which are sensitive to pressure and lateral strain. Current electronic skins (eSkin) mimic this dual functionality by detecting both normal pressure and lateral strain. However, these sensors are challenging to fabricate and often have large spatial footprints, limiting their integration into high-density arrays. To overcome these challenges, this work presents an all-elastomer sensor for tactile detection of softness, combining a parallel-plate capacitor structure with a serpentine piezoresistive strain sensor in a vertically stacked design. Conductive carbon structures, digitally laser patterned and embedded in a styrene-ethylene-butylene-styrene (SEBS) thermoplastic elastomer, serve as robust and modifiable electrodes. The device displays the ability to differentiate moduli between 74 kPa and 1.49 MPa. We conduct a parametric study to evaluate the effects of object dimensions, materials choices, and design parameters on sensor performance. Importantly, we investigate the sensor performance when mounted onto a soft substrate, analogous to the human fingertip or robotic digit. Overall, this work highlights the potential of z-directionally stacked sensing components with tunable properties to realize compact, multimodal devices.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipStanford Graduate Fellowship; National Science Foundation Graduate Research Fellowship Program [DGE-1656518]; Tianqiao and Chrissy Chen Ideation and Prototyping Lab; Stanford Wearable Electronics Initiative (eWEAR)
dc.identifier.doi10.1002/admt.202501685
dc.identifier.embargoNo
dc.identifier.issn2365-709X
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-105025658391
dc.identifier.urihttps://doi.org/10.1002/admt.202501685
dc.identifier.urihttps://hdl.handle.net/20.500.14288/32011
dc.identifier.wos001644829300001
dc.keywordsElastomer
dc.keywordsElectronic skin
dc.keywordsLaser-induced graphene
dc.keywordsMultimodal sensor
dc.language.isoeng
dc.publisherWiley
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofAdvanced Materials Technologies
dc.relation.openaccessNo
dc.rightsCopyrighted
dc.subjectMaterials science
dc.titleA compact, elastomeric multimodal sensor for tactile softness discrimination
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameBeker
person.givenNameLevent
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files