Publication:
On the uniqueness of epidemic models fitting a normalized curve of removed individuals

dc.contributor.coauthorBilge, Ayse Humeyra
dc.contributor.coauthorSamanlioglu, Funda
dc.contributor.kuauthorErgönül, Önder
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.yokid110398
dc.date.accessioned2024-11-09T23:12:37Z
dc.date.issued2015
dc.description.abstractThe susceptible-infected-removed (SIR) and the susceptible-exposed-infected-removed (SEIR) epidemic models with constant parameters are adequate for describing the time evolution of seasonal diseases for which available data usually consist of fatality reports. The problems associated with the determination of system parameters starts with the inference of the number of removed individuals from fatality data, because the infection to death period may depend on health care factors. Then, one encounters numerical sensitivity problems for the determination of the system parameters from a correct but noisy representative of the number of removed individuals. Finally as the available data is necessarily a normalized one, the models fitting this data may not be unique. We prove that the parameters of the (SEIR) model cannot be determined from the knowledge of a normalized curve of "Removed" individuals and we show that the proportion of removed individuals, , is invariant under the interchange of the incubation and infection periods and corresponding scalings of the contact rate. On the other hand we prove that the SIR model fitting a normalized curve of removed individuals is unique and we give an implicit relation for the system parameters in terms of the values of and , where is the steady state value of and and are the values of and its derivative at the inflection point of . We use these implicit relations to provide a robust method for the estimation of the system parameters and we apply this procedure to the fatality data for the H1N1 epidemic in the Czech Republic during 2009. We finally discuss the inference of the number of removed individuals from observational data, using a clinical survey conducted at major hospitals in Istanbul, Turkey, during 2009 H1N1 epidemic.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue4
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.volume71
dc.identifier.doi10.1007/s00285-014-0838-z
dc.identifier.eissn1432-1416
dc.identifier.issn0303-6812
dc.identifier.scopus2-s2.0-84941336130
dc.identifier.urihttp://dx.doi.org/10.1007/s00285-014-0838-z
dc.identifier.urihttps://hdl.handle.net/20.500.14288/9848
dc.identifier.wos360851700001
dc.keywordsEpidemic models
dc.keywordsDynamical systems
dc.keywordsSIR model
dc.keywordsSEIR model
dc.keywordsInference
dc.keywordsFatality data
dc.keywordsInfluenza-A H1N1
dc.keywordsPandemic influenza
dc.keywordsGlobal stability
dc.keywordsSEIR model
dc.keywordsDynamics
dc.keywordsInfection
dc.keywordsNumber
dc.keywordsPhase
dc.languageEnglish
dc.publisherSpringer Heidelberg
dc.sourceJournal of Mathematical Biology
dc.subjectBiology
dc.subjectMathematical
dc.subjectComputational biology
dc.titleOn the uniqueness of epidemic models fitting a normalized curve of removed individuals
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-1935-9235
local.contributor.kuauthorErgönül, Mehmet Önder

Files