Publication:
Quantum mechanics of Klein-Gordon fields I: Hilbert Space, localized states, and chiral symmetry

dc.contributor.coauthorZamani, Farhad
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorMostafazadeh, Ali
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T23:28:44Z
dc.date.issued2006
dc.description.abstractWe derive an explicit manifestly covariant expression for the most general positive-definite and Lorentz-invariant inner product on the space of solutions of the Klein-Gordon equation. This expression involves a one-pararneter family of conserved current densities J(a)(mu) with a is an element of (-1, 1), that are analogous to the chiral current density for spin half fields. The conservation of J(a)(mu) is related to a global gauge symmetry of the Klein-Gordon fields whose gauge group is U(1) for rational a and the multiplicative group of positive real numbers for irrational a. We show that the associated gauge symmetry is responsible for the conservation of the total probability of the localization of the field in space. This provides a simple resolution of the paradoxical situation resulting from the fact that the probability current density for free scalar fields is neither covariant nor conserved. Furthermore, we discuss the implications of our approach for free real scalar fields offering a direct proof of the uniqueness of the relativistically invariant positive-definite inner product on the space of real Klein-Gordon fields. We also explore an extension of our results to scalar fields minimally coupled to an electromagnetic field.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue9
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume321
dc.identifier.doi10.1016/j.aop.2006.02.007
dc.identifier.eissn1096-035X
dc.identifier.issn0003-4916
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-33746364492
dc.identifier.urihttps://doi.org/10.1016/j.aop.2006.02.007
dc.identifier.urihttps://hdl.handle.net/20.500.14288/11945
dc.identifier.wos240245700008
dc.keywordsPseudo-hermiticity
dc.keywordsPt-stmmetry
dc.keywordsRelativistic particle
dc.keywordsQuantization
dc.keywordsCausality
dc.keywordsHamiltonians
dc.keywordsUniqueness
dc.keywordsCosmology
dc.keywordsEquations
dc.keywordsSpectrum
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofAnnals of Physics
dc.subjectPhysics, multidisciplinary
dc.titleQuantum mechanics of Klein-Gordon fields I: Hilbert Space, localized states, and chiral symmetry
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorMostafazadeh, Ali
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files