Publication:
Online bounded component analysis: a simple recurrent neural network with local update rule for unsupervised separation of dependent and independent sources

dc.contributor.coauthorSimsek, Berfin
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorErdoğan, Alper Tunga
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T23:46:17Z
dc.date.issued2019
dc.description.abstractA low complexity recurrent neural network structure is proposed for unsupervised separation of both independent and dependent sources from their linear mixtures. The proposed network is generated based on Bounded Component Analysis (BCA) approach. We first propose an Online-BCA optimization setting. Then we derive the corresponding recurrent neural network (RNN) with iterative learning update expressions. The resulting 2-layer network has a fairly simple structure with feedforward synapses at the input layer, recurrent synapses at the output layer, and top-down connections from the output layer to the first layer. The synaptic weight updates of the proposed RNN are local, supporting its biological plausibility. We use correlated synthetic sources and natural images as examples to illustrate the correlated/dependent source separation capability of the proposed neural network.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume2019-November
dc.identifier.doi10.1109/IEEECONF44664.2019.9048916
dc.identifier.isbn9781-7281-4300-2
dc.identifier.issn1058-6393
dc.identifier.scopus2-s2.0-85083293402
dc.identifier.urihttps://doi.org/10.1109/IEEECONF44664.2019.9048916
dc.identifier.urihttps://hdl.handle.net/20.500.14288/13943
dc.identifier.wos544249200313
dc.keywordsBounded component analysis
dc.keywordsRecurrent neural network
dc.keywordsLocal update
dc.keywordsBiologically plausible
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofConference Record - Asilomar Conference on Signals, Systems and Computers
dc.subjectComputer science
dc.subjectInformation systems
dc.subjectEngineering
dc.subjectElectrical electronic engineering
dc.subjectTelecommunications
dc.titleOnline bounded component analysis: a simple recurrent neural network with local update rule for unsupervised separation of dependent and independent sources
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorErdoğan, Alper Tunga
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Electrical and Electronics Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files