Publication:
High-performance magnetic FePt (L1(0)) surface microrollers towards medical imaging-guided endovascular delivery applications

dc.contributor.coauthorBozüyük, U.
dc.contributor.coauthorSuadiye, E.
dc.contributor.coauthorAghakhani, A.
dc.contributor.coauthorDoğan, N.O.
dc.contributor.coauthorLazovic, J.
dc.contributor.coauthorTiryaki, M.E.
dc.contributor.coauthorSchneider, M.
dc.contributor.coauthorKaracakol, A.C.
dc.contributor.coauthorDemir, S.O., Richter, G.
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.yokid297104
dc.date.accessioned2024-11-09T13:23:18Z
dc.date.issued2021
dc.description.abstractControlled microrobotic navigation in the vascular system can revolutionize minimally invasive medical applications, such as targeted drug and gene delivery. Magnetically controlled surface microrollers have emerged as a promising microrobotic platform for controlled navigation in the circulatory system. Locomotion of micrororollers in strong flow velocities is a highly challenging task, which requires magnetic materials having strong magnetic actuation properties while being biocompatible. The L10-FePt magnetic coating can achieve such requirements. Therefore, such coating has been integrated into 8 µm-diameter surface microrollers and investigated the medical potential of the system from magnetic locomotion performance, biocompatibility, and medical imaging perspectives. The FePt coating significantly advanced the magnetic performance and biocompatibility of the microrollers compared to a previously used magnetic material, nickel. The FePt coating also allowed multimodal imaging of microrollers in magnetic resonance and photoacoustic imaging in ex vivo settings without additional contrast agents. Finally, FePt-coated microrollers showed upstream locomotion ability against 4.5 cm s?1 average flow velocity with real-time photoacoustic imaging, demonstrating the navigation control potential of microrollers in the circulatory system for future in vivo applications. Overall, L10-FePt is conceived as the key material for image-guided propulsion in the vascular system to perform future targeted medical interventions.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue8
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipMax Planck Institute
dc.description.sponsorshipProjekt DEAL
dc.description.versionPublisher version
dc.description.volume32
dc.formatpdf
dc.identifier.doi10.1002/adfm.202109741
dc.identifier.eissn1616-3028
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03267
dc.identifier.issn1616-301X
dc.identifier.linkhttps://doi.org/10.1002/adfm.202109741
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85118799443
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3364
dc.identifier.wos716667500001
dc.keywordsBiocompatible materials
dc.keywordsCirculatory system
dc.keywordsFePt
dc.keywordsMagnetic microrobots
dc.keywordsMedical imaging
dc.keywordsMedical microrobots
dc.languageEnglish
dc.publisherWiley
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10050
dc.sourceAdvanced Functional Materials
dc.subjectChemistry
dc.subjectScience and technology
dc.subjectMaterial science
dc.subjectPhysics
dc.subjectNanoscience and nanotechnology
dc.titleHigh-performance magnetic FePt (L1(0)) surface microrollers towards medical imaging-guided endovascular delivery applications
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-8249-3854
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10050.pdf
Size:
3.56 MB
Format:
Adobe Portable Document Format