Publication:
Capillary trapping of various nanomaterials on additively manufactured scaffolds for 3D micro-/nanofabrication

dc.contributor.coauthorLyu,Xianglong
dc.contributor.coauthorZheng,Zhiqiang
dc.contributor.coauthorShiva,Anitha
dc.contributor.coauthorHan,Mertcan
dc.contributor.coauthorDayan,Cem Balda
dc.contributor.coauthorZhang,Mingchao
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-12-29T09:39:07Z
dc.date.issued2024
dc.description.abstractHigh-precision additive manufacturing technologies, such as two-photon polymerization, are mainly limited to photo-curable polymers and currently lacks the possibility to produce multimaterial components. Herein, we report a physically bottom-up assembly strategy that leverages capillary force to trap various nanomaterials and assemble them onto three-dimensional (3D) microscaffolds. This capillary-trapping strategy enables precise and uniform assembly of nanomaterials into versatile 3D microstructures with high uniformity and mass loading. Our approach applies to diverse materials irrespective of their physiochemical properties, including polymers, metals, metal oxides, and others. It can integrate at least four different material types into a single 3D microstructure in a sequential, layer-by-layer manner, opening immense possibilities for tailored functionalities on demand. Furthermore, the 3D microscaffolds are removable, facilitating the creation of pure material-based 3D microstructures. This universal 3D micro-/nanofabrication technique with various nanomaterials enables the creation of advanced miniature devices with potential applications in multifunctional microrobots and smart micromachines. © The Author(s) 2024.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue1
dc.description.openaccessAll Open Access
dc.description.openaccessGold Open Access
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipThe authors thank Dr. Jie Han and Saadet Baltaci for their technical assistance. The authors thank Ulrike Eigenthaler for her help in FIB characterization. This work was funded by the Max Planck Society, Chinese Scholarship Council (X.L.), Alexander von Humboldt Foundation (M.Z.), and European Research Council (ERC) Advanced Grant SoMMoR project with grant no. 834531 (M.S.).
dc.description.volume15
dc.identifier.doi10.1038/s41467-024-51086-2
dc.identifier.eissn2041-1723
dc.identifier.issn2041-1723
dc.identifier.link 
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85200561523
dc.identifier.urihttps://doi.org/10.1038/s41467-024-51086-2
dc.identifier.urihttps://hdl.handle.net/20.500.14288/22888
dc.identifier.wos1285374600037
dc.keywordsPhoton polymerization
dc.keywords3D printing
dc.keywordsLithography
dc.language.isoeng
dc.publisherNature Research
dc.relation.grantno 
dc.relation.ispartofNature Communications
dc.rights 
dc.subjectOptical chemistry
dc.subjectTwo-photon absorption
dc.titleCapillary trapping of various nanomaterials on additively manufactured scaffolds for 3D micro-/nanofabrication
dc.typeJournal Article
dc.type.other 
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Mechanical Engineering
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR04516.pdf
Size:
2.54 MB
Format:
Adobe Portable Document Format