Publication:
High-concentration carbon assists plasticity-driven hydrogen embrittlement in a Fe-high Mn steel with a relatively high stacking fault energy

dc.contributor.coauthorTugluca, Ibrahim Burkay
dc.contributor.coauthorKoyama, Motomichi
dc.contributor.coauthorBal, Burak
dc.contributor.coauthorAkiyama, Eiji
dc.contributor.coauthorTsuzaki, Kaneaki
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorCanadinç, Demircan
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T22:56:53Z
dc.date.issued2018
dc.description.abstractWe investigated the effects of electrochemical hydrogen charging on the mechanical properties of a Fe-33Mn-1.1C austenitic steel with high carbon concentration and relatively high stacking fault energy. Hydrogen pre charging increased the yield strength and degraded the elongation and work-hardening capability. The increase in yield strength is a result of the solution hardening of hydrogen. A reduction in the cross-sectional area by subcrack formation is the primary factor causing reduction in work-hardening ability. Fracture modes were detected to be both intergranular and transgranular regionally. Neither intergranular nor transgranular cracking modes are related to deformation twinning or simple decohesion in contrast to conventional Fe-Mn-C twinning induced plasticity steels. The hydrogen-assisted crack initiation and subsequent propagation are attributed to plasticity-dominated mechanisms associated with strain localization. The occurrence of dynamic strain aging by the high carbon content and ease of cross slip owing to the high stacking fault energy can cause strain/damage localization, which assists hydrogen embrittlement associated with the hydrogen-enhanced localized plasticity mechanism.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipJSPS KAKENHI [JP16H06365, JP17H04956]
dc.description.sponsorshipJapan Science and Technology Agency (JST) under Industry Academia Collaborative RandD Program "Heterogeneous Structure Control: Towards Innovative Development of Metallic Structural Materials." [20100113]
dc.description.sponsorshipGrants-in-Aid for Scientific Research [16H06365, 17H04956] Funding Source: KAKEN This work was financially supported by JSPS KAKENHI (JP16H06365 and JP17H04956) and the Japan Science and Technology Agency (JST) (Grant number: 20100113) under Industry Academia Collaborative RandD Program "Heterogeneous Structure Control: Towards Innovative Development of Metallic Structural Materials."
dc.description.volume717
dc.identifier.doi10.1016/j.msea.2018.01.087
dc.identifier.eissn1873-4936
dc.identifier.issn0921-5093
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85041383524
dc.identifier.urihttps://doi.org/10.1016/j.msea.2018.01.087
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7457
dc.identifier.wos426233400012
dc.keywordsHydrogen embrittlement
dc.keywordsHigh-manganese austenitic steel
dc.keywordsTension test
dc.keywordsStacking fault energy
dc.keywordsMicrostructure
dc.keywordsElectron channelling contrast imaging c austenitic steel
dc.keywordsStainless-steels
dc.keywordsEpsilon-martensite
dc.keywordsStrain-rate
dc.keywordsFailure
dc.keywordsTensile
dc.keywordsAl
dc.keywordsMechanism
dc.keywordsFracture
dc.keywordsAlloys
dc.language.isoeng
dc.publisherElsevier Science Sa
dc.relation.ispartofMaterials Science and Engineering A-Structural Materials Properties Microstructure and Processing
dc.subjectNanoscience
dc.subjectNanotechnology
dc.subjectMaterials science, multidisciplinary
dc.subjectMetallurgy
dc.subjectMetallurgical engineering
dc.titleHigh-concentration carbon assists plasticity-driven hydrogen embrittlement in a Fe-high Mn steel with a relatively high stacking fault energy
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorCanadinç, Demircan
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Mechanical Engineering
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files