Publication:
Magnetic soft micromachines made of linked microactuator networks

dc.contributor.coauthorHu, Xinghao
dc.contributor.coauthorYasa, Immihan C.
dc.contributor.coauthorRen, Ziyu
dc.contributor.coauthorGoudu, Sandhya R.
dc.contributor.coauthorCeylan, Hakan
dc.contributor.coauthorHu, Wenqi
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid297104
dc.date.accessioned2024-11-09T11:37:08Z
dc.date.issued2021
dc.description.abstractSoft untethered micromachines with overall sizes less than 100 mu m enable diverse programmed shape transformations and functions for future biomedical and organ-on-a-chip applications. However, fabrication of such machines has been hampered by the lack of control of microactuator's programmability. To address such challenge, we use two-photon polymerization to selectively link Janus microparticle-based magnetic microactuators by three-dimensional (3D) printing of soft or rigid polymer microstructures or links. Sequentially, we position each microactuator at a desired location by surface rolling and rotation to a desired position and orientation by applying magnetic field-based torques, and then 3D printing soft or rigid links to connect with other temporarily fixed microactuators. The linked 2D microactuator networks exhibit programmed 2D and 3D shape transformations, and untethered limbless and limbed micromachine prototypes exhibit various robotic gaits for surface locomotion. The fabrication strategy presented here can enable soft micromachine designs and applications at the cellular scales.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue23
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipAdvanced Grant
dc.description.sponsorshipSoMMoR Project
dc.description.sponsorshipGerman Research Foundation (DFG) Soft Material Robotic Systems (SPP 2100) Program
dc.description.sponsorshipAlexander von Humboldt Foundation
dc.description.sponsorshipMax Planck Society
dc.description.versionPublisher version
dc.description.volume7
dc.formatpdf
dc.identifier.doi10.1126/sciadv.abe8436
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02999
dc.identifier.issn2375-2548
dc.identifier.linkhttps://doi.org/10.1126/sciadv.abe8436
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85107275279
dc.identifier.urihttps://hdl.handle.net/20.500.14288/67
dc.identifier.wos658757100011
dc.keywordsColloidal superstructures
dc.keywordsPropulsion
dc.keywordsAnisotropy
dc.keywordsNanorods
dc.keywordsShape
dc.languageEnglish
dc.publisherAmerican Association for the Advancement of Science (AAAS)
dc.relation.grantno834531
dc.relation.grantno2197/3-1
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9646
dc.sourceScience Advances
dc.subjectScience and technology
dc.titleMagnetic soft micromachines made of linked microactuator networks
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-8249-3854
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9646.pdf
Size:
650.12 KB
Format:
Adobe Portable Document Format