Publication:
Numerical optimization of eigenvalues of Hermitian matrix functions

dc.contributor.departmentDepartment of Mathematics
dc.contributor.departmentN/A
dc.contributor.kuauthorMengi, Emre
dc.contributor.kuauthorYıldırım, Emre Alper
dc.contributor.kuauthorKılıç, Mustafa
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid113760
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T11:38:09Z
dc.date.issued2014
dc.description.abstractThis work concerns the global minimization of a prescribed eigenvalue or a weighted sum of prescribed eigenvalues of a Hermitian matrix-valued function depending on its parameters analytically in a box. We describe how the analytical properties of eigenvalue functions can be put into use to derive piecewise quadratic functions that underestimate the eigenvalue functions. These piecewise quadratic underestimators lead us to a global minimization algorithm, originally due to Breiman and Cutler. We prove the global convergence of the algorithm and show that it can be effectively used for the minimization of extreme eigenvalues, e.g., the largest eigenvalue or the sum of the largest specified number of eigenvalues. This is particularly facilitated by the analytical formulas for the first derivatives of eigenvalues, as well as analytical lower bounds on the second derivatives that can be deduced for extreme eigenvalue functions. The applications that we have in mind also include the H-infinity-norm of a linear dynamical system, numerical radius, distance to uncontrollability, and various other nonconvex eigenvalue optimization problems, for which, generically, the eigenvalue function involved is simple at all points.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue2
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipTurkish Academy of Sciences (TÜBA)-GEBİP (Turkish Academy of Sciences Young Scientists Award Program)
dc.description.versionPublisher version
dc.description.volume35
dc.formatpdf
dc.identifier.doi10.1137/130933472
dc.identifier.eissn1095-7162
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00187
dc.identifier.issn0895-4798
dc.identifier.linkhttps://doi.org/10.1137/130933472
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-84903985877
dc.identifier.urihttps://hdl.handle.net/20.500.14288/111
dc.identifier.wos338830100020
dc.keywordsHermitian eigenvalues
dc.keywordsAnalytic
dc.keywordsGlobal optimization
dc.keywordsPerturbation of eigenvalues
dc.keywordsQuadratic programming
dc.languageEnglish
dc.publisherSociety for Industrial and Applied Mathematics (SIAM)
dc.relation.grantnoPIRG-GA-268355
dc.relation.grantno109T660
dc.relation.grantno112M870
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/1215
dc.sourceSIAM Journal on Matrix Analysis and Applications
dc.subjectApplied mathematics
dc.titleNumerical optimization of eigenvalues of Hermitian matrix functions
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-0788-0066
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.kuauthorMengi, Emre
local.contributor.kuauthorYıldırım, Emre Alper
local.contributor.kuauthorKılıç, Mustafa
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
1215.pdf
Size:
645.94 KB
Format:
Adobe Portable Document Format