Publication:
Using support vector machines to learn the efficient set in multiple objective discrete optimization

dc.contributor.coauthorAytuğ, Haldun
dc.contributor.departmentDepartment of Business Administration
dc.contributor.departmentDepartment of Business Administration
dc.contributor.kuauthorSayın, Serpil
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Administrative Sciences and Economics
dc.contributor.yokid6755
dc.date.accessioned2024-11-10T00:10:13Z
dc.date.issued2009
dc.description.abstractWe propose using support vector machines (SVMs) to learn the efficient set in multiple objective discrete optimization (MODO). We conjecture that a surface generated by SVM could provide a good approximation of the efficient set. As one way of testing this idea, we embed the SVM-approximated efficient set information into a Genetic Algorithm (GA). This is accomplished by using a SVM-based fitness function that guides the GA search. We implement our SVM-guided GA on the multiple objective knapsack and assignment problems. We observe that using SVM improves the performance of the GA compared to a benchmark distance based fitness function and may provide competitive results.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue2
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipKUMPEM This research has been partially supported by KUMPEM research funds. KUMPEM is Koc University and Migros's joint Professional Education Center.
dc.description.volume193
dc.identifier.doi10.1016/j.ejor.2007.09.002
dc.identifier.eissn1872-6860
dc.identifier.issn0377-2217
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-53049090858
dc.identifier.urihttp://dx.doi.org/10.1016/j.ejor.2007.09.002
dc.identifier.urihttps://hdl.handle.net/20.500.14288/17267
dc.identifier.wos260749100017
dc.keywordsMultiple objective optimization
dc.keywordsEfficient set
dc.keywordsMachine learning
dc.keywordsSupport vector machines
dc.languageEnglish
dc.publisherElsevier
dc.sourceEuropean Journal of Operational Research
dc.subjectManagement
dc.subjectOperations research and management science
dc.titleUsing support vector machines to learn the efficient set in multiple objective discrete optimization
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-3672-0769
local.contributor.kuauthorSayın, Serpil
relation.isOrgUnitOfPublicationca286af4-45fd-463c-a264-5b47d5caf520
relation.isOrgUnitOfPublication.latestForDiscoveryca286af4-45fd-463c-a264-5b47d5caf520

Files