Publication:
Artificial-goosebump-driven microactuation

dc.contributor.coauthorZhang, Mingchao
dc.contributor.coauthorPal, Aniket
dc.contributor.coauthorLyu, Xianglong
dc.contributor.coauthorWu, Yingdan
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.date.accessioned2024-12-29T09:40:42Z
dc.date.issued2024
dc.description.abstractMicroactuators provide controllable driving forces for precise positioning, manipulation and operation at the microscale. Development of microactuators using active materials is often hampered by their fabrication complexity and limited motion at small scales. Here we report light-fuelled artificial goosebumps to actuate passive microstructures, inspired by the natural reaction of hair bristling (piloerection) on biological skin. We use light-responsive liquid crystal elastomers as the responsive artificial skin to move three-dimensionally printed passive polymer microstructures. When exposed to a programmable femtosecond laser, the liquid crystal elastomer skin generates localized artificial goosebumps, resulting in precise actuation of the surrounding microstructures. Such microactuation can tilt micro-mirrors for the controlled manipulation of light reflection and disassemble capillary-force-induced self-assembled microstructures globally and locally. We demonstrate the potential application of the proposed microactuation system for information storage. This methodology provides precise, localized and controllable manipulation of microstructures, opening new possibilities for the development of programmable micromachines. Light-induced artificial goosebumps on liquid crystal elastomer skin are used to precisely manipulate passive microstructures, achieving a localized and controllable system for programmable micromachines.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue4
dc.description.openaccessGreen Published, hybrid
dc.description.publisherscopeInternational
dc.description.sponsorsWe thank H. Shahsavan, J. Han, Z. Zheng, F. Wang, C. B. Dayan, R. H. Soon, U. Bozuyuk, G. Gardi and N. Mahkam for their fruitful discussions. This work was funded by the Max Planck Society, Alexander Von Humboldt Foundation (M.Z. and A.P.) and European Research Council (ERC) Advanced Grant SoMMoR project with grant no. 834531 (M.S.).
dc.description.volume23
dc.identifier.doi10.1038/s41563-024-01810-6
dc.identifier.eissn1476-4660
dc.identifier.issn1476-1122
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85184477231
dc.identifier.urihttps://doi.org/10.1038/s41563-024-01810-6
dc.identifier.urihttps://hdl.handle.net/20.500.14288/23388
dc.identifier.wos1159787700001
dc.keywordsArtificial organs
dc.keywordsElastomers
dc.keywordsLight reflection
dc.keywordsLiquid crystals
dc.keywordsMicroactuators
dc.languageen
dc.publisherNature Portfolio
dc.relation.grantnoMax-Planck-Gesellschaft (Max Planck Society)
dc.relation.grantnoMax Planck Society
dc.relation.grantnoAlexander Von Humboldt Foundation [834531]
dc.relation.grantnoEuropean Research Council (ERC)
dc.sourceNature Materials
dc.subjectChemistry
dc.subjectPhysical
dc.subjectMaterials science
dc.subjectMultidisciplinary
dc.subjectPhysics
dc.subjectApplied
dc.subjectPhysics
dc.subjectCondensed matter
dc.titleArtificial-goosebump-driven microactuation
dc.typeJournal article
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files