Publication: Artificial-goosebump-driven microactuation
dc.contributor.coauthor | Zhang, Mingchao | |
dc.contributor.coauthor | Pal, Aniket | |
dc.contributor.coauthor | Lyu, Xianglong | |
dc.contributor.coauthor | Wu, Yingdan | |
dc.contributor.department | Department of Mechanical Engineering | |
dc.contributor.kuauthor | Sitti, Metin | |
dc.contributor.other | Department of Mechanical Engineering | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | School of Medicine | |
dc.date.accessioned | 2024-12-29T09:40:42Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Microactuators provide controllable driving forces for precise positioning, manipulation and operation at the microscale. Development of microactuators using active materials is often hampered by their fabrication complexity and limited motion at small scales. Here we report light-fuelled artificial goosebumps to actuate passive microstructures, inspired by the natural reaction of hair bristling (piloerection) on biological skin. We use light-responsive liquid crystal elastomers as the responsive artificial skin to move three-dimensionally printed passive polymer microstructures. When exposed to a programmable femtosecond laser, the liquid crystal elastomer skin generates localized artificial goosebumps, resulting in precise actuation of the surrounding microstructures. Such microactuation can tilt micro-mirrors for the controlled manipulation of light reflection and disassemble capillary-force-induced self-assembled microstructures globally and locally. We demonstrate the potential application of the proposed microactuation system for information storage. This methodology provides precise, localized and controllable manipulation of microstructures, opening new possibilities for the development of programmable micromachines. Light-induced artificial goosebumps on liquid crystal elastomer skin are used to precisely manipulate passive microstructures, achieving a localized and controllable system for programmable micromachines. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | PubMed | |
dc.description.issue | 4 | |
dc.description.openaccess | Green Published, hybrid | |
dc.description.publisherscope | International | |
dc.description.sponsors | We thank H. Shahsavan, J. Han, Z. Zheng, F. Wang, C. B. Dayan, R. H. Soon, U. Bozuyuk, G. Gardi and N. Mahkam for their fruitful discussions. This work was funded by the Max Planck Society, Alexander Von Humboldt Foundation (M.Z. and A.P.) and European Research Council (ERC) Advanced Grant SoMMoR project with grant no. 834531 (M.S.). | |
dc.description.volume | 23 | |
dc.identifier.doi | 10.1038/s41563-024-01810-6 | |
dc.identifier.eissn | 1476-4660 | |
dc.identifier.issn | 1476-1122 | |
dc.identifier.quartile | Q1 | |
dc.identifier.scopus | 2-s2.0-85184477231 | |
dc.identifier.uri | https://doi.org/10.1038/s41563-024-01810-6 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/23388 | |
dc.identifier.wos | 1159787700001 | |
dc.keywords | Artificial organs | |
dc.keywords | Elastomers | |
dc.keywords | Light reflection | |
dc.keywords | Liquid crystals | |
dc.keywords | Microactuators | |
dc.language | en | |
dc.publisher | Nature Portfolio | |
dc.relation.grantno | Max-Planck-Gesellschaft (Max Planck Society) | |
dc.relation.grantno | Max Planck Society | |
dc.relation.grantno | Alexander Von Humboldt Foundation [834531] | |
dc.relation.grantno | European Research Council (ERC) | |
dc.source | Nature Materials | |
dc.subject | Chemistry | |
dc.subject | Physical | |
dc.subject | Materials science | |
dc.subject | Multidisciplinary | |
dc.subject | Physics | |
dc.subject | Applied | |
dc.subject | Physics | |
dc.subject | Condensed matter | |
dc.title | Artificial-goosebump-driven microactuation | |
dc.type | Journal article | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Sitti, Metin | |
relation.isOrgUnitOfPublication | ba2836f3-206d-4724-918c-f598f0086a36 | |
relation.isOrgUnitOfPublication.latestForDiscovery | ba2836f3-206d-4724-918c-f598f0086a36 |